Somatic variations led to the selection of acidic and acidless orange cultivars

Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2021-07, Vol.7 (7), p.954-965
Hauptverfasser: Wang, Lun, Huang, Yue, Liu, ZiAng, He, Jiaxian, Jiang, Xiaolin, He, Fa, Lu, Zhihao, Yang, Shuizhi, Chen, Peng, Yu, Huiwen, Zeng, Bin, Ke, Lingjun, Xie, Zongzhou, Larkin, Robert M., Jiang, Dong, Ming, Ray, Buckler, Edward S., Deng, Xiuxin, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 7
container_start_page 954
container_title Nature plants
container_volume 7
creator Wang, Lun
Huang, Yue
Liu, ZiAng
He, Jiaxian
Jiang, Xiaolin
He, Fa
Lu, Zhihao
Yang, Shuizhi
Chen, Peng
Yu, Huiwen
Zeng, Bin
Ke, Lingjun
Xie, Zongzhou
Larkin, Robert M.
Jiang, Dong
Ming, Ray
Buckler, Edward S.
Deng, Xiuxin
Xu, Qiang
description Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour. An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.
doi_str_mv 10.1038/s41477-021-00941-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2543454951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553124342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWGpfwFXAjZvR_E4mSyn-QaELdR0ySUanTCc131Tq25t2BMWFq1w-zr2Eg9A5JVeU8OoaBBVKFYTRghAtaLE7QhNGpMwnVR3_yqdoBrAihFAlJS_JBC2f4toOrcMfNrU5xB5wFzweIh7eAobQBbe_4thg61qfSdv7Q-wCAI7J9q8Bu203tHkCztBJYzsIs-93il7ubp_nD8Vief84v1kUjks2FLxxTgdfc1Z6q5uqrogiinstuOeqZsRLxRQlItSN0LSydVMGV4aSWaa1kHyKLsfdTYrv2wCDWbfgQtfZPsQtGCYFF1JoSTN68QddxW3q8-8yJTllmWSZYiPlUgRIoTGb1K5t-jSUmL1mM2o2WbM5aDa7XOJjCTKcPaSf6X9aX7Yvf6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553124342</pqid></control><display><type>article</type><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</creator><creatorcontrib>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</creatorcontrib><description>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour. An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00941-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/711 ; 631/449/2492 ; Acidity ; Apomixis ; Asexuality ; Biomedical and Life Sciences ; Chromosomes ; Citrus sinensis ; Coverage ; Cultivars ; Diploids ; Dispersal ; Dispersion ; Diversification ; Flavor ; Flavors ; Fruits ; Genes ; Genetic diversity ; Genomes ; Genomic analysis ; Life Sciences ; Mutants ; Mutation ; Nucleotides ; Plant breeding ; Plant Sciences ; Taste ; Transposons</subject><ispartof>Nature plants, 2021-07, Vol.7 (7), p.954-965</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</citedby><cites>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</cites><orcidid>0000-0002-9417-5789 ; 0000-0003-1786-9696 ; 0000-0002-3100-371X ; 0000-0003-4490-4514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00941-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00941-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Lun</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Liu, ZiAng</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>He, Fa</creatorcontrib><creatorcontrib>Lu, Zhihao</creatorcontrib><creatorcontrib>Yang, Shuizhi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Huiwen</creatorcontrib><creatorcontrib>Zeng, Bin</creatorcontrib><creatorcontrib>Ke, Lingjun</creatorcontrib><creatorcontrib>Xie, Zongzhou</creatorcontrib><creatorcontrib>Larkin, Robert M.</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><description>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour. An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</description><subject>631/208/711</subject><subject>631/449/2492</subject><subject>Acidity</subject><subject>Apomixis</subject><subject>Asexuality</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosomes</subject><subject>Citrus sinensis</subject><subject>Coverage</subject><subject>Cultivars</subject><subject>Diploids</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Diversification</subject><subject>Flavor</subject><subject>Flavors</subject><subject>Fruits</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Life Sciences</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Taste</subject><subject>Transposons</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEYRYMoWGpfwFXAjZvR_E4mSyn-QaELdR0ySUanTCc131Tq25t2BMWFq1w-zr2Eg9A5JVeU8OoaBBVKFYTRghAtaLE7QhNGpMwnVR3_yqdoBrAihFAlJS_JBC2f4toOrcMfNrU5xB5wFzweIh7eAobQBbe_4thg61qfSdv7Q-wCAI7J9q8Bu203tHkCztBJYzsIs-93il7ubp_nD8Vief84v1kUjks2FLxxTgdfc1Z6q5uqrogiinstuOeqZsRLxRQlItSN0LSydVMGV4aSWaa1kHyKLsfdTYrv2wCDWbfgQtfZPsQtGCYFF1JoSTN68QddxW3q8-8yJTllmWSZYiPlUgRIoTGb1K5t-jSUmL1mM2o2WbM5aDa7XOJjCTKcPaSf6X9aX7Yvf6s</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Lun</creator><creator>Huang, Yue</creator><creator>Liu, ZiAng</creator><creator>He, Jiaxian</creator><creator>Jiang, Xiaolin</creator><creator>He, Fa</creator><creator>Lu, Zhihao</creator><creator>Yang, Shuizhi</creator><creator>Chen, Peng</creator><creator>Yu, Huiwen</creator><creator>Zeng, Bin</creator><creator>Ke, Lingjun</creator><creator>Xie, Zongzhou</creator><creator>Larkin, Robert M.</creator><creator>Jiang, Dong</creator><creator>Ming, Ray</creator><creator>Buckler, Edward S.</creator><creator>Deng, Xiuxin</creator><creator>Xu, Qiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9417-5789</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid><orcidid>https://orcid.org/0000-0002-3100-371X</orcidid><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid></search><sort><creationdate>20210701</creationdate><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><author>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/208/711</topic><topic>631/449/2492</topic><topic>Acidity</topic><topic>Apomixis</topic><topic>Asexuality</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosomes</topic><topic>Citrus sinensis</topic><topic>Coverage</topic><topic>Cultivars</topic><topic>Diploids</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Diversification</topic><topic>Flavor</topic><topic>Flavors</topic><topic>Fruits</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Life Sciences</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Taste</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lun</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Liu, ZiAng</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>He, Fa</creatorcontrib><creatorcontrib>Lu, Zhihao</creatorcontrib><creatorcontrib>Yang, Shuizhi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Huiwen</creatorcontrib><creatorcontrib>Zeng, Bin</creatorcontrib><creatorcontrib>Ke, Lingjun</creatorcontrib><creatorcontrib>Xie, Zongzhou</creatorcontrib><creatorcontrib>Larkin, Robert M.</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lun</au><au>Huang, Yue</au><au>Liu, ZiAng</au><au>He, Jiaxian</au><au>Jiang, Xiaolin</au><au>He, Fa</au><au>Lu, Zhihao</au><au>Yang, Shuizhi</au><au>Chen, Peng</au><au>Yu, Huiwen</au><au>Zeng, Bin</au><au>Ke, Lingjun</au><au>Xie, Zongzhou</au><au>Larkin, Robert M.</au><au>Jiang, Dong</au><au>Ming, Ray</au><au>Buckler, Edward S.</au><au>Deng, Xiuxin</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic variations led to the selection of acidic and acidless orange cultivars</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>7</volume><issue>7</issue><spage>954</spage><epage>965</epage><pages>954-965</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour. An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41477-021-00941-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9417-5789</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid><orcidid>https://orcid.org/0000-0002-3100-371X</orcidid><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2021-07, Vol.7 (7), p.954-965
issn 2055-0278
2055-0278
language eng
recordid cdi_proquest_miscellaneous_2543454951
source Nature; SpringerLink Journals - AutoHoldings
subjects 631/208/711
631/449/2492
Acidity
Apomixis
Asexuality
Biomedical and Life Sciences
Chromosomes
Citrus sinensis
Coverage
Cultivars
Diploids
Dispersal
Dispersion
Diversification
Flavor
Flavors
Fruits
Genes
Genetic diversity
Genomes
Genomic analysis
Life Sciences
Mutants
Mutation
Nucleotides
Plant breeding
Plant Sciences
Taste
Transposons
title Somatic variations led to the selection of acidic and acidless orange cultivars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20variations%20led%20to%20the%20selection%20of%20acidic%20and%20acidless%20orange%20cultivars&rft.jtitle=Nature%20plants&rft.au=Wang,%20Lun&rft.date=2021-07-01&rft.volume=7&rft.issue=7&rft.spage=954&rft.epage=965&rft.pages=954-965&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00941-x&rft_dat=%3Cproquest_cross%3E2553124342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553124342&rft_id=info:pmid/&rfr_iscdi=true