Somatic variations led to the selection of acidic and acidless orange cultivars
Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through gra...
Gespeichert in:
Veröffentlicht in: | Nature plants 2021-07, Vol.7 (7), p.954-965 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 7 |
container_start_page | 954 |
container_title | Nature plants |
container_volume | 7 |
creator | Wang, Lun Huang, Yue Liu, ZiAng He, Jiaxian Jiang, Xiaolin He, Fa Lu, Zhihao Yang, Shuizhi Chen, Peng Yu, Huiwen Zeng, Bin Ke, Lingjun Xie, Zongzhou Larkin, Robert M. Jiang, Dong Ming, Ray Buckler, Edward S. Deng, Xiuxin Xu, Qiang |
description | Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour.
An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour. |
doi_str_mv | 10.1038/s41477-021-00941-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2543454951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553124342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWGpfwFXAjZvR_E4mSyn-QaELdR0ySUanTCc131Tq25t2BMWFq1w-zr2Eg9A5JVeU8OoaBBVKFYTRghAtaLE7QhNGpMwnVR3_yqdoBrAihFAlJS_JBC2f4toOrcMfNrU5xB5wFzweIh7eAobQBbe_4thg61qfSdv7Q-wCAI7J9q8Bu203tHkCztBJYzsIs-93il7ubp_nD8Vief84v1kUjks2FLxxTgdfc1Z6q5uqrogiinstuOeqZsRLxRQlItSN0LSydVMGV4aSWaa1kHyKLsfdTYrv2wCDWbfgQtfZPsQtGCYFF1JoSTN68QddxW3q8-8yJTllmWSZYiPlUgRIoTGb1K5t-jSUmL1mM2o2WbM5aDa7XOJjCTKcPaSf6X9aX7Yvf6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553124342</pqid></control><display><type>article</type><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</creator><creatorcontrib>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</creatorcontrib><description>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour.
An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00941-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/711 ; 631/449/2492 ; Acidity ; Apomixis ; Asexuality ; Biomedical and Life Sciences ; Chromosomes ; Citrus sinensis ; Coverage ; Cultivars ; Diploids ; Dispersal ; Dispersion ; Diversification ; Flavor ; Flavors ; Fruits ; Genes ; Genetic diversity ; Genomes ; Genomic analysis ; Life Sciences ; Mutants ; Mutation ; Nucleotides ; Plant breeding ; Plant Sciences ; Taste ; Transposons</subject><ispartof>Nature plants, 2021-07, Vol.7 (7), p.954-965</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</citedby><cites>FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</cites><orcidid>0000-0002-9417-5789 ; 0000-0003-1786-9696 ; 0000-0002-3100-371X ; 0000-0003-4490-4514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00941-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00941-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Lun</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Liu, ZiAng</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>He, Fa</creatorcontrib><creatorcontrib>Lu, Zhihao</creatorcontrib><creatorcontrib>Yang, Shuizhi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Huiwen</creatorcontrib><creatorcontrib>Zeng, Bin</creatorcontrib><creatorcontrib>Ke, Lingjun</creatorcontrib><creatorcontrib>Xie, Zongzhou</creatorcontrib><creatorcontrib>Larkin, Robert M.</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><description>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour.
An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</description><subject>631/208/711</subject><subject>631/449/2492</subject><subject>Acidity</subject><subject>Apomixis</subject><subject>Asexuality</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosomes</subject><subject>Citrus sinensis</subject><subject>Coverage</subject><subject>Cultivars</subject><subject>Diploids</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Diversification</subject><subject>Flavor</subject><subject>Flavors</subject><subject>Fruits</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Life Sciences</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Taste</subject><subject>Transposons</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEYRYMoWGpfwFXAjZvR_E4mSyn-QaELdR0ySUanTCc131Tq25t2BMWFq1w-zr2Eg9A5JVeU8OoaBBVKFYTRghAtaLE7QhNGpMwnVR3_yqdoBrAihFAlJS_JBC2f4toOrcMfNrU5xB5wFzweIh7eAobQBbe_4thg61qfSdv7Q-wCAI7J9q8Bu203tHkCztBJYzsIs-93il7ubp_nD8Vief84v1kUjks2FLxxTgdfc1Z6q5uqrogiinstuOeqZsRLxRQlItSN0LSydVMGV4aSWaa1kHyKLsfdTYrv2wCDWbfgQtfZPsQtGCYFF1JoSTN68QddxW3q8-8yJTllmWSZYiPlUgRIoTGb1K5t-jSUmL1mM2o2WbM5aDa7XOJjCTKcPaSf6X9aX7Yvf6s</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Lun</creator><creator>Huang, Yue</creator><creator>Liu, ZiAng</creator><creator>He, Jiaxian</creator><creator>Jiang, Xiaolin</creator><creator>He, Fa</creator><creator>Lu, Zhihao</creator><creator>Yang, Shuizhi</creator><creator>Chen, Peng</creator><creator>Yu, Huiwen</creator><creator>Zeng, Bin</creator><creator>Ke, Lingjun</creator><creator>Xie, Zongzhou</creator><creator>Larkin, Robert M.</creator><creator>Jiang, Dong</creator><creator>Ming, Ray</creator><creator>Buckler, Edward S.</creator><creator>Deng, Xiuxin</creator><creator>Xu, Qiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9417-5789</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid><orcidid>https://orcid.org/0000-0002-3100-371X</orcidid><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid></search><sort><creationdate>20210701</creationdate><title>Somatic variations led to the selection of acidic and acidless orange cultivars</title><author>Wang, Lun ; Huang, Yue ; Liu, ZiAng ; He, Jiaxian ; Jiang, Xiaolin ; He, Fa ; Lu, Zhihao ; Yang, Shuizhi ; Chen, Peng ; Yu, Huiwen ; Zeng, Bin ; Ke, Lingjun ; Xie, Zongzhou ; Larkin, Robert M. ; Jiang, Dong ; Ming, Ray ; Buckler, Edward S. ; Deng, Xiuxin ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3fcc9edb326da9f8b807073d943d37b20d5727104ebf4918abf6ec6e62a299453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/208/711</topic><topic>631/449/2492</topic><topic>Acidity</topic><topic>Apomixis</topic><topic>Asexuality</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosomes</topic><topic>Citrus sinensis</topic><topic>Coverage</topic><topic>Cultivars</topic><topic>Diploids</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Diversification</topic><topic>Flavor</topic><topic>Flavors</topic><topic>Fruits</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Life Sciences</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Taste</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lun</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Liu, ZiAng</creatorcontrib><creatorcontrib>He, Jiaxian</creatorcontrib><creatorcontrib>Jiang, Xiaolin</creatorcontrib><creatorcontrib>He, Fa</creatorcontrib><creatorcontrib>Lu, Zhihao</creatorcontrib><creatorcontrib>Yang, Shuizhi</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Huiwen</creatorcontrib><creatorcontrib>Zeng, Bin</creatorcontrib><creatorcontrib>Ke, Lingjun</creatorcontrib><creatorcontrib>Xie, Zongzhou</creatorcontrib><creatorcontrib>Larkin, Robert M.</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Buckler, Edward S.</creatorcontrib><creatorcontrib>Deng, Xiuxin</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lun</au><au>Huang, Yue</au><au>Liu, ZiAng</au><au>He, Jiaxian</au><au>Jiang, Xiaolin</au><au>He, Fa</au><au>Lu, Zhihao</au><au>Yang, Shuizhi</au><au>Chen, Peng</au><au>Yu, Huiwen</au><au>Zeng, Bin</au><au>Ke, Lingjun</au><au>Xie, Zongzhou</au><au>Larkin, Robert M.</au><au>Jiang, Dong</au><au>Ming, Ray</au><au>Buckler, Edward S.</au><au>Deng, Xiuxin</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic variations led to the selection of acidic and acidless orange cultivars</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>7</volume><issue>7</issue><spage>954</spage><epage>965</epage><pages>954-965</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Somatic variations are a major source of genetic diversification in asexual plants, and underpin clonal evolution and the breeding of asexual crops. Sweet orange is a model species for studying somatic variation because it reproduces asexually through apomixis and is propagated asexually through grafting. To dissect the genomic basis of somatic variation, we de novo assembled a reference genome of sweet orange with an average of three gaps per chromosome and a N50 contig of 24.2 Mb, as well as six diploid genomes of somatic mutants of sweet oranges. We then sequenced 114 somatic mutants with an average genome coverage of 41×. Categorization of the somatic variations yielded insights into the single-nucleotide somatic mutations, structural variations and transposable element (TE) transpositions. We detected 877 TE insertions, and found TE insertions in the transporter or its regulatory genes associated with variation in fruit acidity. Comparative genomic analysis of sweet oranges from three diversity centres supported a dispersal from South China to the Mediterranean region and to the Americas. This study provides a global view on the somatic variations, the diversification and dispersal history of sweet orange and a set of candidate genes that will be useful for improving fruit taste and flavour.
An improved reference genome of sweet orange and newly sequenced genomes of its somatic mutants uncover the global pattern of somatic variations, the diversification and dispersal history of sweet orange and candidate genes controlling fruit taste and flavour.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41477-021-00941-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9417-5789</orcidid><orcidid>https://orcid.org/0000-0003-1786-9696</orcidid><orcidid>https://orcid.org/0000-0002-3100-371X</orcidid><orcidid>https://orcid.org/0000-0003-4490-4514</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2021-07, Vol.7 (7), p.954-965 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2543454951 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/208/711 631/449/2492 Acidity Apomixis Asexuality Biomedical and Life Sciences Chromosomes Citrus sinensis Coverage Cultivars Diploids Dispersal Dispersion Diversification Flavor Flavors Fruits Genes Genetic diversity Genomes Genomic analysis Life Sciences Mutants Mutation Nucleotides Plant breeding Plant Sciences Taste Transposons |
title | Somatic variations led to the selection of acidic and acidless orange cultivars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20variations%20led%20to%20the%20selection%20of%20acidic%20and%20acidless%20orange%20cultivars&rft.jtitle=Nature%20plants&rft.au=Wang,%20Lun&rft.date=2021-07-01&rft.volume=7&rft.issue=7&rft.spage=954&rft.epage=965&rft.pages=954-965&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00941-x&rft_dat=%3Cproquest_cross%3E2553124342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553124342&rft_id=info:pmid/&rfr_iscdi=true |