Diagnostic Performance of a Machine Learning-Based CT-Derived FFR in Detecting Flow-Limiting Stenosis

Background: The non-invasive quantification of the fractional flow reserve (FFRCT) using a more recent version of an artificial intelligence-based software and latest generation CT scanner (384 slices) may show high performance to detect coronary ischemia. Objectives: To evaluate the diagnostic perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arquivos brasileiros de cardiologia 2021-06, Vol.116 (6), p.1091-1098
Hauptverfasser: Morais, Thamara Carvalho, Assuncao-Jr, Antonildes Nascimento, Dantas Junior, Roberto Nery, Grego da Silva, Carla Franco, de Paula, Caroline Bastida, Torres, Roberto Almeida, Magalhaes, Tiago Augusto, Nomura, Cesar Higa, Rodrigues de Avila, Luiz Francisco, Parga Filho, Jose Rodrigues
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The non-invasive quantification of the fractional flow reserve (FFRCT) using a more recent version of an artificial intelligence-based software and latest generation CT scanner (384 slices) may show high performance to detect coronary ischemia. Objectives: To evaluate the diagnostic performance of FFRCT for the detection of significant coronary artery disease (CAD) in contrast to invasive FFR (iFFR) using previous generation CT scanners (128 and 256-detector rows). Methods: Retrospective study with patients referred to coronary artery CT angiography (CTA) and catheterization (iFFR) procedures. Siemens Somatom Definition Flash (256-detector rows) and AS+ (128-detector rows) CT scanners were used to acquire the images. The FFRCT and the minimal lumen area (MLA) were evaluated using a dedicated software (cFFR version 3.0.0, Siemens Healthineers, Forchheim, Germany). Obstructive CAD was defined as CTA lumen reduction >= 50%, and flow-limiting stenosis as iFFR
ISSN:0066-782X
1678-4170
DOI:10.36660/abc.20190329