Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis

Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium—a reparative transitional cell state in the mouse and a disease-specific cell state ( KRT5 − / KRT17 + ) in human idiopathic pulmonary fibrosis (IPF). The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2021-09, Vol.321 (3), p.L491-L506
Hauptverfasser: Huang, Kevin Y., Petretto, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L506
container_issue 3
container_start_page L491
container_title American journal of physiology. Lung cellular and molecular physiology
container_volume 321
creator Huang, Kevin Y.
Petretto, Enrico
description Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium—a reparative transitional cell state in the mouse and a disease-specific cell state ( KRT5 − / KRT17 + ) in human idiopathic pulmonary fibrosis (IPF). The murine transitional cell state lies between the differentiation from type 2 (AT2) to type 1 pneumocyte (AT1), and the human KRT5 − / KRT17 + cell state may arise from the dysregulation of this differentiation process. We review major findings of single-cell transcriptomics analyses of the fibrotic lung and reanalyzed data from seven single-cell RNA sequencing studies of human and murine models of IPF, focusing on the alveolar epithelium. Our comparative and cross-species single-cell transcriptomics analyses allowed us to further delineate the differentiation trajectories from AT2 to AT1 and AT2 to the KRT5 − / KRT17 + cell state. We observed AT1 cells in human IPF retain the transcriptional signature of the murine transitional cell state. Using pseudotime analysis, we recapitulated the differentiation trajectories from AT2 to AT1 and from AT2 to KRT5 − / KRT17 + cell state in multiple human IPF studies. We further delineated transcriptional programs underlying cell-state transitions and determined the molecular phenotypes at terminal differentiation. We hypothesize that in addition to the reactivation of developmental programs ( SOX4, SOX9), senescence ( TP63, SOX4) and the Notch pathway ( HES1) are predicted to steer intermediate progenitors to the KRT5 − / KRT17 + cell state. Our analyses suggest that activation of SMAD3 later in the differentiation process may explain the fibrotic molecular phenotype typical of KRT5 − / KRT17 + cells.
doi_str_mv 10.1152/ajplung.00594.2020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541787412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577788022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d560c011a4bff07de1696d7efd2e500e1ab4c0ea6425eba655e6e2977761bfcd3</originalsourceid><addsrcrecordid>eNpdkU9LAzEQxYMoWKtfwFPAi5fUSbrJtsdS_AdFQfS8ZHdn25R0s02yglc_udm2Jy-ZhPnNG14eIbccJpxL8aC3ne3b9QRAzrOJAAFnZJQagnEJ2Xm6QwYMFMhLchXCFhIIoEbkd-ldCCx0WBkM1LQR115H41rqGhpMu7bIKrSWfrwtWMA99Ric_caa6nQ6qz3DzsQNWqMtjV63wQzj6RGijgdNamrjOh03pqJdb3ep639oY8q024RrctFoG_DmVMfk6-nxc_nCVu_Pr8vFilVTmEVWSwUVcK6zsmkgr5GruapzbGqByQtyXWYVoFaZkFhqJSUqFPM8zxUvm6qejsn9Ubfzbt9jiMXOhMGabtH1oRAy4_ksz7hI6N0_dOt6nzwNVFKczUAMlDhS1fCHHpui82aXrBUciiGW4hRLcYilGGKZ_gHoX4Wn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577788022</pqid></control><display><type>article</type><title>Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis</title><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Kevin Y. ; Petretto, Enrico</creator><creatorcontrib>Huang, Kevin Y. ; Petretto, Enrico</creatorcontrib><description>Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium—a reparative transitional cell state in the mouse and a disease-specific cell state ( KRT5 − / KRT17 + ) in human idiopathic pulmonary fibrosis (IPF). The murine transitional cell state lies between the differentiation from type 2 (AT2) to type 1 pneumocyte (AT1), and the human KRT5 − / KRT17 + cell state may arise from the dysregulation of this differentiation process. We review major findings of single-cell transcriptomics analyses of the fibrotic lung and reanalyzed data from seven single-cell RNA sequencing studies of human and murine models of IPF, focusing on the alveolar epithelium. Our comparative and cross-species single-cell transcriptomics analyses allowed us to further delineate the differentiation trajectories from AT2 to AT1 and AT2 to the KRT5 − / KRT17 + cell state. We observed AT1 cells in human IPF retain the transcriptional signature of the murine transitional cell state. Using pseudotime analysis, we recapitulated the differentiation trajectories from AT2 to AT1 and from AT2 to KRT5 − / KRT17 + cell state in multiple human IPF studies. We further delineated transcriptional programs underlying cell-state transitions and determined the molecular phenotypes at terminal differentiation. We hypothesize that in addition to the reactivation of developmental programs ( SOX4, SOX9), senescence ( TP63, SOX4) and the Notch pathway ( HES1) are predicted to steer intermediate progenitors to the KRT5 − / KRT17 + cell state. Our analyses suggest that activation of SMAD3 later in the differentiation process may explain the fibrotic molecular phenotype typical of KRT5 − / KRT17 + cells.</description><identifier>ISSN: 1040-0605</identifier><identifier>EISSN: 1522-1504</identifier><identifier>DOI: 10.1152/ajplung.00594.2020</identifier><language>eng</language><publisher>Bethesda: American Physiological Society</publisher><subject>Alveoli ; Animal models ; Cell differentiation ; Differentiation ; Epithelium ; Fibrosis ; Gene sequencing ; Lung diseases ; Lungs ; Phenotypes ; Progenitor cells ; Pulmonary fibrosis ; Ribonucleic acid ; RNA ; Senescence ; Smad3 protein ; Sox9 protein ; Transcription ; Transcriptomics</subject><ispartof>American journal of physiology. Lung cellular and molecular physiology, 2021-09, Vol.321 (3), p.L491-L506</ispartof><rights>Copyright American Physiological Society Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-d560c011a4bff07de1696d7efd2e500e1ab4c0ea6425eba655e6e2977761bfcd3</citedby><cites>FETCH-LOGICAL-c308t-d560c011a4bff07de1696d7efd2e500e1ab4c0ea6425eba655e6e2977761bfcd3</cites><orcidid>0000-0002-6510-9432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Kevin Y.</creatorcontrib><creatorcontrib>Petretto, Enrico</creatorcontrib><title>Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis</title><title>American journal of physiology. Lung cellular and molecular physiology</title><description>Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium—a reparative transitional cell state in the mouse and a disease-specific cell state ( KRT5 − / KRT17 + ) in human idiopathic pulmonary fibrosis (IPF). The murine transitional cell state lies between the differentiation from type 2 (AT2) to type 1 pneumocyte (AT1), and the human KRT5 − / KRT17 + cell state may arise from the dysregulation of this differentiation process. We review major findings of single-cell transcriptomics analyses of the fibrotic lung and reanalyzed data from seven single-cell RNA sequencing studies of human and murine models of IPF, focusing on the alveolar epithelium. Our comparative and cross-species single-cell transcriptomics analyses allowed us to further delineate the differentiation trajectories from AT2 to AT1 and AT2 to the KRT5 − / KRT17 + cell state. We observed AT1 cells in human IPF retain the transcriptional signature of the murine transitional cell state. Using pseudotime analysis, we recapitulated the differentiation trajectories from AT2 to AT1 and from AT2 to KRT5 − / KRT17 + cell state in multiple human IPF studies. We further delineated transcriptional programs underlying cell-state transitions and determined the molecular phenotypes at terminal differentiation. We hypothesize that in addition to the reactivation of developmental programs ( SOX4, SOX9), senescence ( TP63, SOX4) and the Notch pathway ( HES1) are predicted to steer intermediate progenitors to the KRT5 − / KRT17 + cell state. Our analyses suggest that activation of SMAD3 later in the differentiation process may explain the fibrotic molecular phenotype typical of KRT5 − / KRT17 + cells.</description><subject>Alveoli</subject><subject>Animal models</subject><subject>Cell differentiation</subject><subject>Differentiation</subject><subject>Epithelium</subject><subject>Fibrosis</subject><subject>Gene sequencing</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Phenotypes</subject><subject>Progenitor cells</subject><subject>Pulmonary fibrosis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Senescence</subject><subject>Smad3 protein</subject><subject>Sox9 protein</subject><subject>Transcription</subject><subject>Transcriptomics</subject><issn>1040-0605</issn><issn>1522-1504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU9LAzEQxYMoWKtfwFPAi5fUSbrJtsdS_AdFQfS8ZHdn25R0s02yglc_udm2Jy-ZhPnNG14eIbccJpxL8aC3ne3b9QRAzrOJAAFnZJQagnEJ2Xm6QwYMFMhLchXCFhIIoEbkd-ldCCx0WBkM1LQR115H41rqGhpMu7bIKrSWfrwtWMA99Ric_caa6nQ6qz3DzsQNWqMtjV63wQzj6RGijgdNamrjOh03pqJdb3ep639oY8q024RrctFoG_DmVMfk6-nxc_nCVu_Pr8vFilVTmEVWSwUVcK6zsmkgr5GruapzbGqByQtyXWYVoFaZkFhqJSUqFPM8zxUvm6qejsn9Ubfzbt9jiMXOhMGabtH1oRAy4_ksz7hI6N0_dOt6nzwNVFKczUAMlDhS1fCHHpui82aXrBUciiGW4hRLcYilGGKZ_gHoX4Wn</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Huang, Kevin Y.</creator><creator>Petretto, Enrico</creator><general>American Physiological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6510-9432</orcidid></search><sort><creationdate>20210901</creationdate><title>Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis</title><author>Huang, Kevin Y. ; Petretto, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d560c011a4bff07de1696d7efd2e500e1ab4c0ea6425eba655e6e2977761bfcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alveoli</topic><topic>Animal models</topic><topic>Cell differentiation</topic><topic>Differentiation</topic><topic>Epithelium</topic><topic>Fibrosis</topic><topic>Gene sequencing</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Phenotypes</topic><topic>Progenitor cells</topic><topic>Pulmonary fibrosis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Senescence</topic><topic>Smad3 protein</topic><topic>Sox9 protein</topic><topic>Transcription</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kevin Y.</creatorcontrib><creatorcontrib>Petretto, Enrico</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kevin Y.</au><au>Petretto, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis</atitle><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>321</volume><issue>3</issue><spage>L491</spage><epage>L506</epage><pages>L491-L506</pages><issn>1040-0605</issn><eissn>1522-1504</eissn><abstract>Single-cell transcriptomics analyses of the fibrotic lung uncovered two cell states critical to lung injury recovery in the alveolar epithelium—a reparative transitional cell state in the mouse and a disease-specific cell state ( KRT5 − / KRT17 + ) in human idiopathic pulmonary fibrosis (IPF). The murine transitional cell state lies between the differentiation from type 2 (AT2) to type 1 pneumocyte (AT1), and the human KRT5 − / KRT17 + cell state may arise from the dysregulation of this differentiation process. We review major findings of single-cell transcriptomics analyses of the fibrotic lung and reanalyzed data from seven single-cell RNA sequencing studies of human and murine models of IPF, focusing on the alveolar epithelium. Our comparative and cross-species single-cell transcriptomics analyses allowed us to further delineate the differentiation trajectories from AT2 to AT1 and AT2 to the KRT5 − / KRT17 + cell state. We observed AT1 cells in human IPF retain the transcriptional signature of the murine transitional cell state. Using pseudotime analysis, we recapitulated the differentiation trajectories from AT2 to AT1 and from AT2 to KRT5 − / KRT17 + cell state in multiple human IPF studies. We further delineated transcriptional programs underlying cell-state transitions and determined the molecular phenotypes at terminal differentiation. We hypothesize that in addition to the reactivation of developmental programs ( SOX4, SOX9), senescence ( TP63, SOX4) and the Notch pathway ( HES1) are predicted to steer intermediate progenitors to the KRT5 − / KRT17 + cell state. Our analyses suggest that activation of SMAD3 later in the differentiation process may explain the fibrotic molecular phenotype typical of KRT5 − / KRT17 + cells.</abstract><cop>Bethesda</cop><pub>American Physiological Society</pub><doi>10.1152/ajplung.00594.2020</doi><orcidid>https://orcid.org/0000-0002-6510-9432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-0605
ispartof American journal of physiology. Lung cellular and molecular physiology, 2021-09, Vol.321 (3), p.L491-L506
issn 1040-0605
1522-1504
language eng
recordid cdi_proquest_miscellaneous_2541787412
source American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Alveoli
Animal models
Cell differentiation
Differentiation
Epithelium
Fibrosis
Gene sequencing
Lung diseases
Lungs
Phenotypes
Progenitor cells
Pulmonary fibrosis
Ribonucleic acid
RNA
Senescence
Smad3 protein
Sox9 protein
Transcription
Transcriptomics
title Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-species%20integration%20of%20single-cell%20RNA-seq%20resolved%20alveolar-epithelial%20transitional%20states%20in%20idiopathic%20pulmonary%20fibrosis&rft.jtitle=American%20journal%20of%20physiology.%20Lung%20cellular%20and%20molecular%20physiology&rft.au=Huang,%20Kevin%20Y.&rft.date=2021-09-01&rft.volume=321&rft.issue=3&rft.spage=L491&rft.epage=L506&rft.pages=L491-L506&rft.issn=1040-0605&rft.eissn=1522-1504&rft_id=info:doi/10.1152/ajplung.00594.2020&rft_dat=%3Cproquest_cross%3E2577788022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577788022&rft_id=info:pmid/&rfr_iscdi=true