Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images

Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2021-06, Vol.5 (6), p.533-545
Hauptverfasser: Zhang, Kang, Liu, Xiaohong, Xu, Jie, Yuan, Jin, Cai, Wenjia, Chen, Ting, Wang, Kai, Gao, Yuanxu, Nie, Sheng, Xu, Xiaodong, Qin, Xiaoqi, Su, Yuandong, Xu, Wenqin, Olvera, Andrea, Xue, Kanmin, Li, Zhihuan, Zhang, Meixia, Zeng, Xiaoxi, Zhang, Charlotte L., Li, Oulan, Zhang, Edward E., Zhu, Jie, Xu, Yiming, Kermany, Daniel, Zhou, Kaixin, Pan, Ying, Li, Shaoyun, Lai, Iat Fan, Chi, Ying, Wang, Changuang, Pei, Michelle, Zang, Guangxi, Zhang, Qi, Lau, Johnson, Lam, Dennis, Zou, Xiaoguang, Wumaier, Aizezi, Wang, Jianquan, Shen, Yin, Hou, Fan Fan, Zhang, Ping, Xu, Tao, Zhou, Yong, Wang, Guangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 6
container_start_page 533
container_title Nature biomedical engineering
container_volume 5
creator Zhang, Kang
Liu, Xiaohong
Xu, Jie
Yuan, Jin
Cai, Wenjia
Chen, Ting
Wang, Kai
Gao, Yuanxu
Nie, Sheng
Xu, Xiaodong
Qin, Xiaoqi
Su, Yuandong
Xu, Wenqin
Olvera, Andrea
Xue, Kanmin
Li, Zhihuan
Zhang, Meixia
Zeng, Xiaoxi
Zhang, Charlotte L.
Li, Oulan
Zhang, Edward E.
Zhu, Jie
Xu, Yiming
Kermany, Daniel
Zhou, Kaixin
Pan, Ying
Li, Shaoyun
Lai, Iat Fan
Chi, Ying
Wang, Changuang
Pei, Michelle
Zang, Guangxi
Zhang, Qi
Lau, Johnson
Lam, Dennis
Zou, Xiaoguang
Wumaier, Aizezi
Wang, Jianquan
Shen, Yin
Hou, Fan Fan
Zhang, Ping
Xu, Tao
Zhou, Yong
Wang, Guangyu
description Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min −1 per 1.73 m 2 and 0.65–1.1 mmol l −1 , and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.
doi_str_mv 10.1038/s41551-021-00745-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541786351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542128206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</originalsourceid><addsrcrecordid>eNp9kc1KxTAQhYsoKOoLuAq4cVPNf3qX4j8IbhTchTSZXqO9SU3axX0DH9t4KyguXAyZSb5zmHCq6ojgU4JZc5Y5EYLUmJbCiotablV7lAhVN1w-b__qd6vDnF8xxmTB-EKJverjEmCoezAp-LBEq-igz6iLCY0vgByMYEcfAzLBIR-sdxAsoCGB8_ND7JB9STF4i968C7BGzmcwGTaScT0AouXKtMWqGKe4QglGH0yPuim4KSO_MkvIB9VOZ_oMh9_nfvV0ffV4cVvfP9zcXZzf15Yt5FgTzkkHDRiCjcKN61rhLCZSYiUltWUC1crOGA6SKMpavmBUSA6GWaualu1XJ7PvkOL7BHnUK58t9L0JEKesqeBENZIJUtDjP-hrnFLZfENRQhuKZaHoTNkUc07Q6SGVL6W1Jlh_5aPnfHTJR2_y0V8iNotygcMS0o_1P6pPuiyUWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542128206</pqid></control><display><type>article</type><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><source>Alma/SFX Local Collection</source><creator>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</creator><creatorcontrib>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</creatorcontrib><description>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min −1 per 1.73 m 2 and 0.65–1.1 mmol l −1 , and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00745-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/700 ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Blood pressure ; Chronic illnesses ; Deep learning ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Kidney diseases ; Medical imaging ; Retina</subject><ispartof>Nature biomedical engineering, 2021-06, Vol.5 (6), p.533-545</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</citedby><cites>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</cites><orcidid>0000-0003-1312-884X ; 0000-0002-3228-9166 ; 0000-0001-5314-0195 ; 0000-0003-4245-5989 ; 0000-0002-4549-1697 ; 0000-0001-5221-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Cai, Wenjia</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Yuanxu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Su, Yuandong</creatorcontrib><creatorcontrib>Xu, Wenqin</creatorcontrib><creatorcontrib>Olvera, Andrea</creatorcontrib><creatorcontrib>Xue, Kanmin</creatorcontrib><creatorcontrib>Li, Zhihuan</creatorcontrib><creatorcontrib>Zhang, Meixia</creatorcontrib><creatorcontrib>Zeng, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Charlotte L.</creatorcontrib><creatorcontrib>Li, Oulan</creatorcontrib><creatorcontrib>Zhang, Edward E.</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Kermany, Daniel</creatorcontrib><creatorcontrib>Zhou, Kaixin</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Li, Shaoyun</creatorcontrib><creatorcontrib>Lai, Iat Fan</creatorcontrib><creatorcontrib>Chi, Ying</creatorcontrib><creatorcontrib>Wang, Changuang</creatorcontrib><creatorcontrib>Pei, Michelle</creatorcontrib><creatorcontrib>Zang, Guangxi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lau, Johnson</creatorcontrib><creatorcontrib>Lam, Dennis</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><creatorcontrib>Wumaier, Aizezi</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Hou, Fan Fan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Wang, Guangyu</creatorcontrib><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><description>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min −1 per 1.73 m 2 and 0.65–1.1 mmol l −1 , and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</description><subject>639/166/985</subject><subject>692/700</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Blood pressure</subject><subject>Chronic illnesses</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Kidney diseases</subject><subject>Medical imaging</subject><subject>Retina</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KxTAQhYsoKOoLuAq4cVPNf3qX4j8IbhTchTSZXqO9SU3axX0DH9t4KyguXAyZSb5zmHCq6ojgU4JZc5Y5EYLUmJbCiotablV7lAhVN1w-b__qd6vDnF8xxmTB-EKJverjEmCoezAp-LBEq-igz6iLCY0vgByMYEcfAzLBIR-sdxAsoCGB8_ND7JB9STF4i968C7BGzmcwGTaScT0AouXKtMWqGKe4QglGH0yPuim4KSO_MkvIB9VOZ_oMh9_nfvV0ffV4cVvfP9zcXZzf15Yt5FgTzkkHDRiCjcKN61rhLCZSYiUltWUC1crOGA6SKMpavmBUSA6GWaualu1XJ7PvkOL7BHnUK58t9L0JEKesqeBENZIJUtDjP-hrnFLZfENRQhuKZaHoTNkUc07Q6SGVL6W1Jlh_5aPnfHTJR2_y0V8iNotygcMS0o_1P6pPuiyUWA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kang</creator><creator>Liu, Xiaohong</creator><creator>Xu, Jie</creator><creator>Yuan, Jin</creator><creator>Cai, Wenjia</creator><creator>Chen, Ting</creator><creator>Wang, Kai</creator><creator>Gao, Yuanxu</creator><creator>Nie, Sheng</creator><creator>Xu, Xiaodong</creator><creator>Qin, Xiaoqi</creator><creator>Su, Yuandong</creator><creator>Xu, Wenqin</creator><creator>Olvera, Andrea</creator><creator>Xue, Kanmin</creator><creator>Li, Zhihuan</creator><creator>Zhang, Meixia</creator><creator>Zeng, Xiaoxi</creator><creator>Zhang, Charlotte L.</creator><creator>Li, Oulan</creator><creator>Zhang, Edward E.</creator><creator>Zhu, Jie</creator><creator>Xu, Yiming</creator><creator>Kermany, Daniel</creator><creator>Zhou, Kaixin</creator><creator>Pan, Ying</creator><creator>Li, Shaoyun</creator><creator>Lai, Iat Fan</creator><creator>Chi, Ying</creator><creator>Wang, Changuang</creator><creator>Pei, Michelle</creator><creator>Zang, Guangxi</creator><creator>Zhang, Qi</creator><creator>Lau, Johnson</creator><creator>Lam, Dennis</creator><creator>Zou, Xiaoguang</creator><creator>Wumaier, Aizezi</creator><creator>Wang, Jianquan</creator><creator>Shen, Yin</creator><creator>Hou, Fan Fan</creator><creator>Zhang, Ping</creator><creator>Xu, Tao</creator><creator>Zhou, Yong</creator><creator>Wang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1312-884X</orcidid><orcidid>https://orcid.org/0000-0002-3228-9166</orcidid><orcidid>https://orcid.org/0000-0001-5314-0195</orcidid><orcidid>https://orcid.org/0000-0003-4245-5989</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0001-5221-8026</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><author>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/985</topic><topic>692/700</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Blood pressure</topic><topic>Chronic illnesses</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Kidney diseases</topic><topic>Medical imaging</topic><topic>Retina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Cai, Wenjia</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Yuanxu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Su, Yuandong</creatorcontrib><creatorcontrib>Xu, Wenqin</creatorcontrib><creatorcontrib>Olvera, Andrea</creatorcontrib><creatorcontrib>Xue, Kanmin</creatorcontrib><creatorcontrib>Li, Zhihuan</creatorcontrib><creatorcontrib>Zhang, Meixia</creatorcontrib><creatorcontrib>Zeng, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Charlotte L.</creatorcontrib><creatorcontrib>Li, Oulan</creatorcontrib><creatorcontrib>Zhang, Edward E.</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Kermany, Daniel</creatorcontrib><creatorcontrib>Zhou, Kaixin</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Li, Shaoyun</creatorcontrib><creatorcontrib>Lai, Iat Fan</creatorcontrib><creatorcontrib>Chi, Ying</creatorcontrib><creatorcontrib>Wang, Changuang</creatorcontrib><creatorcontrib>Pei, Michelle</creatorcontrib><creatorcontrib>Zang, Guangxi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lau, Johnson</creatorcontrib><creatorcontrib>Lam, Dennis</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><creatorcontrib>Wumaier, Aizezi</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Hou, Fan Fan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Wang, Guangyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kang</au><au>Liu, Xiaohong</au><au>Xu, Jie</au><au>Yuan, Jin</au><au>Cai, Wenjia</au><au>Chen, Ting</au><au>Wang, Kai</au><au>Gao, Yuanxu</au><au>Nie, Sheng</au><au>Xu, Xiaodong</au><au>Qin, Xiaoqi</au><au>Su, Yuandong</au><au>Xu, Wenqin</au><au>Olvera, Andrea</au><au>Xue, Kanmin</au><au>Li, Zhihuan</au><au>Zhang, Meixia</au><au>Zeng, Xiaoxi</au><au>Zhang, Charlotte L.</au><au>Li, Oulan</au><au>Zhang, Edward E.</au><au>Zhu, Jie</au><au>Xu, Yiming</au><au>Kermany, Daniel</au><au>Zhou, Kaixin</au><au>Pan, Ying</au><au>Li, Shaoyun</au><au>Lai, Iat Fan</au><au>Chi, Ying</au><au>Wang, Changuang</au><au>Pei, Michelle</au><au>Zang, Guangxi</au><au>Zhang, Qi</au><au>Lau, Johnson</au><au>Lam, Dennis</au><au>Zou, Xiaoguang</au><au>Wumaier, Aizezi</au><au>Wang, Jianquan</au><au>Shen, Yin</au><au>Hou, Fan Fan</au><au>Zhang, Ping</au><au>Xu, Tao</au><au>Zhou, Yong</au><au>Wang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>533</spage><epage>545</epage><pages>533-545</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min −1 per 1.73 m 2 and 0.65–1.1 mmol l −1 , and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort. Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41551-021-00745-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1312-884X</orcidid><orcidid>https://orcid.org/0000-0002-3228-9166</orcidid><orcidid>https://orcid.org/0000-0001-5314-0195</orcidid><orcidid>https://orcid.org/0000-0003-4245-5989</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0001-5221-8026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2021-06, Vol.5 (6), p.533-545
issn 2157-846X
2157-846X
language eng
recordid cdi_proquest_miscellaneous_2541786351
source Alma/SFX Local Collection
subjects 639/166/985
692/700
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Blood pressure
Chronic illnesses
Deep learning
Diabetes
Diabetes mellitus (non-insulin dependent)
Kidney diseases
Medical imaging
Retina
title Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning%20models%20for%20the%20detection%20and%20incidence%20prediction%20of%20chronic%20kidney%20disease%20and%20type%202%20diabetes%20from%20retinal%20fundus%20images&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Zhang,%20Kang&rft.date=2021-06-01&rft.volume=5&rft.issue=6&rft.spage=533&rft.epage=545&rft.pages=533-545&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00745-6&rft_dat=%3Cproquest_cross%3E2542128206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542128206&rft_id=info:pmid/&rfr_iscdi=true