Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images
Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2021-06, Vol.5 (6), p.533-545 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 6 |
container_start_page | 533 |
container_title | Nature biomedical engineering |
container_volume | 5 |
creator | Zhang, Kang Liu, Xiaohong Xu, Jie Yuan, Jin Cai, Wenjia Chen, Ting Wang, Kai Gao, Yuanxu Nie, Sheng Xu, Xiaodong Qin, Xiaoqi Su, Yuandong Xu, Wenqin Olvera, Andrea Xue, Kanmin Li, Zhihuan Zhang, Meixia Zeng, Xiaoxi Zhang, Charlotte L. Li, Oulan Zhang, Edward E. Zhu, Jie Xu, Yiming Kermany, Daniel Zhou, Kaixin Pan, Ying Li, Shaoyun Lai, Iat Fan Chi, Ying Wang, Changuang Pei, Michelle Zang, Guangxi Zhang, Qi Lau, Johnson Lam, Dennis Zou, Xiaoguang Wumaier, Aizezi Wang, Jianquan Shen, Yin Hou, Fan Fan Zhang, Ping Xu, Tao Zhou, Yong Wang, Guangyu |
description | Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min
−1
per 1.73 m
2
and 0.65–1.1 mmol l
−1
, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort.
Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases. |
doi_str_mv | 10.1038/s41551-021-00745-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541786351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542128206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</originalsourceid><addsrcrecordid>eNp9kc1KxTAQhYsoKOoLuAq4cVPNf3qX4j8IbhTchTSZXqO9SU3axX0DH9t4KyguXAyZSb5zmHCq6ojgU4JZc5Y5EYLUmJbCiotablV7lAhVN1w-b__qd6vDnF8xxmTB-EKJverjEmCoezAp-LBEq-igz6iLCY0vgByMYEcfAzLBIR-sdxAsoCGB8_ND7JB9STF4i968C7BGzmcwGTaScT0AouXKtMWqGKe4QglGH0yPuim4KSO_MkvIB9VOZ_oMh9_nfvV0ffV4cVvfP9zcXZzf15Yt5FgTzkkHDRiCjcKN61rhLCZSYiUltWUC1crOGA6SKMpavmBUSA6GWaualu1XJ7PvkOL7BHnUK58t9L0JEKesqeBENZIJUtDjP-hrnFLZfENRQhuKZaHoTNkUc07Q6SGVL6W1Jlh_5aPnfHTJR2_y0V8iNotygcMS0o_1P6pPuiyUWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542128206</pqid></control><display><type>article</type><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><source>Alma/SFX Local Collection</source><creator>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</creator><creatorcontrib>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</creatorcontrib><description>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min
−1
per 1.73 m
2
and 0.65–1.1 mmol l
−1
, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort.
Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00745-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/700 ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Blood pressure ; Chronic illnesses ; Deep learning ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Kidney diseases ; Medical imaging ; Retina</subject><ispartof>Nature biomedical engineering, 2021-06, Vol.5 (6), p.533-545</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</citedby><cites>FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</cites><orcidid>0000-0003-1312-884X ; 0000-0002-3228-9166 ; 0000-0001-5314-0195 ; 0000-0003-4245-5989 ; 0000-0002-4549-1697 ; 0000-0001-5221-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Cai, Wenjia</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Yuanxu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Su, Yuandong</creatorcontrib><creatorcontrib>Xu, Wenqin</creatorcontrib><creatorcontrib>Olvera, Andrea</creatorcontrib><creatorcontrib>Xue, Kanmin</creatorcontrib><creatorcontrib>Li, Zhihuan</creatorcontrib><creatorcontrib>Zhang, Meixia</creatorcontrib><creatorcontrib>Zeng, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Charlotte L.</creatorcontrib><creatorcontrib>Li, Oulan</creatorcontrib><creatorcontrib>Zhang, Edward E.</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Kermany, Daniel</creatorcontrib><creatorcontrib>Zhou, Kaixin</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Li, Shaoyun</creatorcontrib><creatorcontrib>Lai, Iat Fan</creatorcontrib><creatorcontrib>Chi, Ying</creatorcontrib><creatorcontrib>Wang, Changuang</creatorcontrib><creatorcontrib>Pei, Michelle</creatorcontrib><creatorcontrib>Zang, Guangxi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lau, Johnson</creatorcontrib><creatorcontrib>Lam, Dennis</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><creatorcontrib>Wumaier, Aizezi</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Hou, Fan Fan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Wang, Guangyu</creatorcontrib><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><description>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min
−1
per 1.73 m
2
and 0.65–1.1 mmol l
−1
, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort.
Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</description><subject>639/166/985</subject><subject>692/700</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Blood pressure</subject><subject>Chronic illnesses</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Kidney diseases</subject><subject>Medical imaging</subject><subject>Retina</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KxTAQhYsoKOoLuAq4cVPNf3qX4j8IbhTchTSZXqO9SU3axX0DH9t4KyguXAyZSb5zmHCq6ojgU4JZc5Y5EYLUmJbCiotablV7lAhVN1w-b__qd6vDnF8xxmTB-EKJverjEmCoezAp-LBEq-igz6iLCY0vgByMYEcfAzLBIR-sdxAsoCGB8_ND7JB9STF4i968C7BGzmcwGTaScT0AouXKtMWqGKe4QglGH0yPuim4KSO_MkvIB9VOZ_oMh9_nfvV0ffV4cVvfP9zcXZzf15Yt5FgTzkkHDRiCjcKN61rhLCZSYiUltWUC1crOGA6SKMpavmBUSA6GWaualu1XJ7PvkOL7BHnUK58t9L0JEKesqeBENZIJUtDjP-hrnFLZfENRQhuKZaHoTNkUc07Q6SGVL6W1Jlh_5aPnfHTJR2_y0V8iNotygcMS0o_1P6pPuiyUWA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kang</creator><creator>Liu, Xiaohong</creator><creator>Xu, Jie</creator><creator>Yuan, Jin</creator><creator>Cai, Wenjia</creator><creator>Chen, Ting</creator><creator>Wang, Kai</creator><creator>Gao, Yuanxu</creator><creator>Nie, Sheng</creator><creator>Xu, Xiaodong</creator><creator>Qin, Xiaoqi</creator><creator>Su, Yuandong</creator><creator>Xu, Wenqin</creator><creator>Olvera, Andrea</creator><creator>Xue, Kanmin</creator><creator>Li, Zhihuan</creator><creator>Zhang, Meixia</creator><creator>Zeng, Xiaoxi</creator><creator>Zhang, Charlotte L.</creator><creator>Li, Oulan</creator><creator>Zhang, Edward E.</creator><creator>Zhu, Jie</creator><creator>Xu, Yiming</creator><creator>Kermany, Daniel</creator><creator>Zhou, Kaixin</creator><creator>Pan, Ying</creator><creator>Li, Shaoyun</creator><creator>Lai, Iat Fan</creator><creator>Chi, Ying</creator><creator>Wang, Changuang</creator><creator>Pei, Michelle</creator><creator>Zang, Guangxi</creator><creator>Zhang, Qi</creator><creator>Lau, Johnson</creator><creator>Lam, Dennis</creator><creator>Zou, Xiaoguang</creator><creator>Wumaier, Aizezi</creator><creator>Wang, Jianquan</creator><creator>Shen, Yin</creator><creator>Hou, Fan Fan</creator><creator>Zhang, Ping</creator><creator>Xu, Tao</creator><creator>Zhou, Yong</creator><creator>Wang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1312-884X</orcidid><orcidid>https://orcid.org/0000-0002-3228-9166</orcidid><orcidid>https://orcid.org/0000-0001-5314-0195</orcidid><orcidid>https://orcid.org/0000-0003-4245-5989</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0001-5221-8026</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</title><author>Zhang, Kang ; Liu, Xiaohong ; Xu, Jie ; Yuan, Jin ; Cai, Wenjia ; Chen, Ting ; Wang, Kai ; Gao, Yuanxu ; Nie, Sheng ; Xu, Xiaodong ; Qin, Xiaoqi ; Su, Yuandong ; Xu, Wenqin ; Olvera, Andrea ; Xue, Kanmin ; Li, Zhihuan ; Zhang, Meixia ; Zeng, Xiaoxi ; Zhang, Charlotte L. ; Li, Oulan ; Zhang, Edward E. ; Zhu, Jie ; Xu, Yiming ; Kermany, Daniel ; Zhou, Kaixin ; Pan, Ying ; Li, Shaoyun ; Lai, Iat Fan ; Chi, Ying ; Wang, Changuang ; Pei, Michelle ; Zang, Guangxi ; Zhang, Qi ; Lau, Johnson ; Lam, Dennis ; Zou, Xiaoguang ; Wumaier, Aizezi ; Wang, Jianquan ; Shen, Yin ; Hou, Fan Fan ; Zhang, Ping ; Xu, Tao ; Zhou, Yong ; Wang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-1441fe8ea10a708dfb5dc016607662cb5de7b6faa4e61723b4932564ea3cc78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/985</topic><topic>692/700</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Blood pressure</topic><topic>Chronic illnesses</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Kidney diseases</topic><topic>Medical imaging</topic><topic>Retina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kang</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Yuan, Jin</creatorcontrib><creatorcontrib>Cai, Wenjia</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Yuanxu</creatorcontrib><creatorcontrib>Nie, Sheng</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Qin, Xiaoqi</creatorcontrib><creatorcontrib>Su, Yuandong</creatorcontrib><creatorcontrib>Xu, Wenqin</creatorcontrib><creatorcontrib>Olvera, Andrea</creatorcontrib><creatorcontrib>Xue, Kanmin</creatorcontrib><creatorcontrib>Li, Zhihuan</creatorcontrib><creatorcontrib>Zhang, Meixia</creatorcontrib><creatorcontrib>Zeng, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Charlotte L.</creatorcontrib><creatorcontrib>Li, Oulan</creatorcontrib><creatorcontrib>Zhang, Edward E.</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Xu, Yiming</creatorcontrib><creatorcontrib>Kermany, Daniel</creatorcontrib><creatorcontrib>Zhou, Kaixin</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Li, Shaoyun</creatorcontrib><creatorcontrib>Lai, Iat Fan</creatorcontrib><creatorcontrib>Chi, Ying</creatorcontrib><creatorcontrib>Wang, Changuang</creatorcontrib><creatorcontrib>Pei, Michelle</creatorcontrib><creatorcontrib>Zang, Guangxi</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Lau, Johnson</creatorcontrib><creatorcontrib>Lam, Dennis</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><creatorcontrib>Wumaier, Aizezi</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Shen, Yin</creatorcontrib><creatorcontrib>Hou, Fan Fan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Wang, Guangyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kang</au><au>Liu, Xiaohong</au><au>Xu, Jie</au><au>Yuan, Jin</au><au>Cai, Wenjia</au><au>Chen, Ting</au><au>Wang, Kai</au><au>Gao, Yuanxu</au><au>Nie, Sheng</au><au>Xu, Xiaodong</au><au>Qin, Xiaoqi</au><au>Su, Yuandong</au><au>Xu, Wenqin</au><au>Olvera, Andrea</au><au>Xue, Kanmin</au><au>Li, Zhihuan</au><au>Zhang, Meixia</au><au>Zeng, Xiaoxi</au><au>Zhang, Charlotte L.</au><au>Li, Oulan</au><au>Zhang, Edward E.</au><au>Zhu, Jie</au><au>Xu, Yiming</au><au>Kermany, Daniel</au><au>Zhou, Kaixin</au><au>Pan, Ying</au><au>Li, Shaoyun</au><au>Lai, Iat Fan</au><au>Chi, Ying</au><au>Wang, Changuang</au><au>Pei, Michelle</au><au>Zang, Guangxi</au><au>Zhang, Qi</au><au>Lau, Johnson</au><au>Lam, Dennis</au><au>Zou, Xiaoguang</au><au>Wumaier, Aizezi</au><au>Wang, Jianquan</au><au>Shen, Yin</au><au>Hou, Fan Fan</au><au>Zhang, Ping</au><au>Xu, Tao</au><au>Zhou, Yong</au><au>Wang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>533</spage><epage>545</epage><pages>533-545</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85–0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1–13.4 ml min
−1
per 1.73 m
2
and 0.65–1.1 mmol l
−1
, and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort.
Deep-learning models trained on retinal fundus images can be used to identify chronic kidney disease and type 2 diabetes and to predict the risk of the progression of these diseases.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41551-021-00745-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1312-884X</orcidid><orcidid>https://orcid.org/0000-0002-3228-9166</orcidid><orcidid>https://orcid.org/0000-0001-5314-0195</orcidid><orcidid>https://orcid.org/0000-0003-4245-5989</orcidid><orcidid>https://orcid.org/0000-0002-4549-1697</orcidid><orcidid>https://orcid.org/0000-0001-5221-8026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2021-06, Vol.5 (6), p.533-545 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_proquest_miscellaneous_2541786351 |
source | Alma/SFX Local Collection |
subjects | 639/166/985 692/700 Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Blood pressure Chronic illnesses Deep learning Diabetes Diabetes mellitus (non-insulin dependent) Kidney diseases Medical imaging Retina |
title | Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning%20models%20for%20the%20detection%20and%20incidence%20prediction%20of%20chronic%20kidney%20disease%20and%20type%202%20diabetes%20from%20retinal%20fundus%20images&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Zhang,%20Kang&rft.date=2021-06-01&rft.volume=5&rft.issue=6&rft.spage=533&rft.epage=545&rft.pages=533-545&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00745-6&rft_dat=%3Cproquest_cross%3E2542128206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542128206&rft_id=info:pmid/&rfr_iscdi=true |