Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning

The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2021-06, Vol.5 (6), p.586-599
Hauptverfasser: Liang, Naixin, Li, Bingsi, Jia, Ziqi, Wang, Chenyang, Wu, Pancheng, Zheng, Tao, Wang, Yanyu, Qiu, Fujun, Wu, Yijun, Su, Jing, Xu, Jiayue, Xu, Feng, Chu, Huiling, Fang, Shuai, Yang, Xingyu, Wu, Chengju, Cao, Zhili, Cao, Lei, Bing, Zhongxing, Liu, Hongsheng, Li, Li, Huang, Cheng, Qin, Yingzhi, Cui, Yushang, Han-Zhang, Han, Xiang, Jianxing, Liu, Hao, Guo, Xin, Li, Shanqing, Zhao, Heng, Zhang, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 6
container_start_page 586
container_title Nature biomedical engineering
container_volume 5
creator Liang, Naixin
Li, Bingsi
Jia, Ziqi
Wang, Chenyang
Wu, Pancheng
Zheng, Tao
Wang, Yanyu
Qiu, Fujun
Wu, Yijun
Su, Jing
Xu, Jiayue
Xu, Feng
Chu, Huiling
Fang, Shuai
Yang, Xingyu
Wu, Chengju
Cao, Zhili
Cao, Lei
Bing, Zhongxing
Liu, Hongsheng
Li, Li
Huang, Cheng
Qin, Yingzhi
Cui, Yushang
Han-Zhang, Han
Xiang, Jianxing
Liu, Hao
Guo, Xin
Li, Shanqing
Zhao, Heng
Zhang, Zhihong
description The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of tumour-derived signals at dilution factors as low as 1 in 10,000. For a total of 308 patients with surgery-resectable lung cancer and 261 age- and sex-matched non-cancer control individuals recruited from two hospitals, the assay detected 52–81% of the patients at disease stages IA to III with a specificity of 96% (95% confidence interval (CI) 93–98%). In a subgroup of 115 individuals, the assay identified, at 100% specificity (95% CI 91–100%), nearly twice as many patients with cancer as those identified by ultradeep mutation sequencing analysis. The low amounts of ctDNA permitted by machine-learning-aided deep methylation sequencing could provide advantages in cancer screening and the assessment of treatment efficacy. Deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of early cancers from plasma samples at dilution factors as low as 1/10,000.
doi_str_mv 10.1038/s41551-021-00746-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541785143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541785143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-aaaf130c5dc1e6104c735fcbae11bb8fd523b6f13c13d4c1e39ab30bdd35a08e3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2KqiDKF-ihssSFS1qPx95kjwj6T0LtpUi9WY49AaPEWWwHab99vV1aKg4cLFt6v3kznsfYOxAfQGD3MSvQGhoh6xGtWjX6FTuSoNumU6tfB_-9D9lJzndCCFijWrf6DTtEBQgo8YiN12NJNlPMoYQH4p4KuRLmyOeBu5DcMtoS4g0vyzQviV9-P-cPwVaONnyicrvd6RXPdL9QdDvUBk-e91s-WXcbIvGRbIpVecteD3bMdPJ4H7Prz59-Xnxtrn58-XZxftU4bHVprLUDoHDaO6AVCOVa1IPrLQH0fTd4LbFfVcQBelUZXNseRe89ais6wmN2tvfdpLlOlYuZQnY0jjbSvGQjtYK206CwoqfP0Lv6zVin21ESZN2grJTcUy7NOScazCaFyaatAWF2cZh9HKbGYf7EYXQtev9ovfQT-X8lf5dfAdwDuUrxhtJT7xdsfwN2AZcb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542128462</pqid></control><display><type>article</type><title>Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Liang, Naixin ; Li, Bingsi ; Jia, Ziqi ; Wang, Chenyang ; Wu, Pancheng ; Zheng, Tao ; Wang, Yanyu ; Qiu, Fujun ; Wu, Yijun ; Su, Jing ; Xu, Jiayue ; Xu, Feng ; Chu, Huiling ; Fang, Shuai ; Yang, Xingyu ; Wu, Chengju ; Cao, Zhili ; Cao, Lei ; Bing, Zhongxing ; Liu, Hongsheng ; Li, Li ; Huang, Cheng ; Qin, Yingzhi ; Cui, Yushang ; Han-Zhang, Han ; Xiang, Jianxing ; Liu, Hao ; Guo, Xin ; Li, Shanqing ; Zhao, Heng ; Zhang, Zhihong</creator><creatorcontrib>Liang, Naixin ; Li, Bingsi ; Jia, Ziqi ; Wang, Chenyang ; Wu, Pancheng ; Zheng, Tao ; Wang, Yanyu ; Qiu, Fujun ; Wu, Yijun ; Su, Jing ; Xu, Jiayue ; Xu, Feng ; Chu, Huiling ; Fang, Shuai ; Yang, Xingyu ; Wu, Chengju ; Cao, Zhili ; Cao, Lei ; Bing, Zhongxing ; Liu, Hongsheng ; Li, Li ; Huang, Cheng ; Qin, Yingzhi ; Cui, Yushang ; Han-Zhang, Han ; Xiang, Jianxing ; Liu, Hao ; Guo, Xin ; Li, Shanqing ; Zhao, Heng ; Zhang, Zhihong</creatorcontrib><description>The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of tumour-derived signals at dilution factors as low as 1 in 10,000. For a total of 308 patients with surgery-resectable lung cancer and 261 age- and sex-matched non-cancer control individuals recruited from two hospitals, the assay detected 52–81% of the patients at disease stages IA to III with a specificity of 96% (95% confidence interval (CI) 93–98%). In a subgroup of 115 individuals, the assay identified, at 100% specificity (95% CI 91–100%), nearly twice as many patients with cancer as those identified by ultradeep mutation sequencing analysis. The low amounts of ctDNA permitted by machine-learning-aided deep methylation sequencing could provide advantages in cancer screening and the assessment of treatment efficacy. Deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of early cancers from plasma samples at dilution factors as low as 1/10,000.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00746-5</identifier><identifier>PMID: 34131323</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 631/114 ; 631/337 ; 631/61 ; 631/67 ; 692/53 ; Adult ; Biomarkers ; Biomarkers, Tumor - blood ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cancer ; Cancer screening ; Case-Control Studies ; Circulating Tumor DNA - blood ; Circulating Tumor DNA - genetics ; Classifiers ; Confidence intervals ; Deoxyribonucleic acid ; Dilution ; DNA ; DNA Methylation ; DNA sequencing ; Early Detection of Cancer - methods ; Female ; High-Throughput Nucleotide Sequencing ; Humans ; Learning algorithms ; Lung cancer ; Lung Neoplasms - blood ; Lung Neoplasms - diagnosis ; Lung Neoplasms - genetics ; Lung Neoplasms - pathology ; Machine learning ; Machine Learning - statistics &amp; numerical data ; Male ; Medical screening ; Methylation ; Middle Aged ; Mutation ; Patients ; Sequence analysis ; Sequence Analysis, DNA - methods ; Subgroups ; Surgery ; Tumors</subject><ispartof>Nature biomedical engineering, 2021-06, Vol.5 (6), p.586-599</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-aaaf130c5dc1e6104c735fcbae11bb8fd523b6f13c13d4c1e39ab30bdd35a08e3</citedby><cites>FETCH-LOGICAL-c375t-aaaf130c5dc1e6104c735fcbae11bb8fd523b6f13c13d4c1e39ab30bdd35a08e3</cites><orcidid>0000-0002-4320-8739 ; 0000-0001-8122-7992 ; 0000-0002-1454-1604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34131323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Naixin</creatorcontrib><creatorcontrib>Li, Bingsi</creatorcontrib><creatorcontrib>Jia, Ziqi</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Wu, Pancheng</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Wang, Yanyu</creatorcontrib><creatorcontrib>Qiu, Fujun</creatorcontrib><creatorcontrib>Wu, Yijun</creatorcontrib><creatorcontrib>Su, Jing</creatorcontrib><creatorcontrib>Xu, Jiayue</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Chu, Huiling</creatorcontrib><creatorcontrib>Fang, Shuai</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Wu, Chengju</creatorcontrib><creatorcontrib>Cao, Zhili</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Bing, Zhongxing</creatorcontrib><creatorcontrib>Liu, Hongsheng</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Qin, Yingzhi</creatorcontrib><creatorcontrib>Cui, Yushang</creatorcontrib><creatorcontrib>Han-Zhang, Han</creatorcontrib><creatorcontrib>Xiang, Jianxing</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Li, Shanqing</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><title>Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of tumour-derived signals at dilution factors as low as 1 in 10,000. For a total of 308 patients with surgery-resectable lung cancer and 261 age- and sex-matched non-cancer control individuals recruited from two hospitals, the assay detected 52–81% of the patients at disease stages IA to III with a specificity of 96% (95% confidence interval (CI) 93–98%). In a subgroup of 115 individuals, the assay identified, at 100% specificity (95% CI 91–100%), nearly twice as many patients with cancer as those identified by ultradeep mutation sequencing analysis. The low amounts of ctDNA permitted by machine-learning-aided deep methylation sequencing could provide advantages in cancer screening and the assessment of treatment efficacy. Deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of early cancers from plasma samples at dilution factors as low as 1/10,000.</description><subject>45</subject><subject>45/23</subject><subject>631/114</subject><subject>631/337</subject><subject>631/61</subject><subject>631/67</subject><subject>692/53</subject><subject>Adult</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer screening</subject><subject>Case-Control Studies</subject><subject>Circulating Tumor DNA - blood</subject><subject>Circulating Tumor DNA - genetics</subject><subject>Classifiers</subject><subject>Confidence intervals</subject><subject>Deoxyribonucleic acid</subject><subject>Dilution</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA sequencing</subject><subject>Early Detection of Cancer - methods</subject><subject>Female</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - blood</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - pathology</subject><subject>Machine learning</subject><subject>Machine Learning - statistics &amp; numerical data</subject><subject>Male</subject><subject>Medical screening</subject><subject>Methylation</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Patients</subject><subject>Sequence analysis</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Subgroups</subject><subject>Surgery</subject><subject>Tumors</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2KqiDKF-ihssSFS1qPx95kjwj6T0LtpUi9WY49AaPEWWwHab99vV1aKg4cLFt6v3kznsfYOxAfQGD3MSvQGhoh6xGtWjX6FTuSoNumU6tfB_-9D9lJzndCCFijWrf6DTtEBQgo8YiN12NJNlPMoYQH4p4KuRLmyOeBu5DcMtoS4g0vyzQviV9-P-cPwVaONnyicrvd6RXPdL9QdDvUBk-e91s-WXcbIvGRbIpVecteD3bMdPJ4H7Prz59-Xnxtrn58-XZxftU4bHVprLUDoHDaO6AVCOVa1IPrLQH0fTd4LbFfVcQBelUZXNseRe89ais6wmN2tvfdpLlOlYuZQnY0jjbSvGQjtYK206CwoqfP0Lv6zVin21ESZN2grJTcUy7NOScazCaFyaatAWF2cZh9HKbGYf7EYXQtev9ovfQT-X8lf5dfAdwDuUrxhtJT7xdsfwN2AZcb</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liang, Naixin</creator><creator>Li, Bingsi</creator><creator>Jia, Ziqi</creator><creator>Wang, Chenyang</creator><creator>Wu, Pancheng</creator><creator>Zheng, Tao</creator><creator>Wang, Yanyu</creator><creator>Qiu, Fujun</creator><creator>Wu, Yijun</creator><creator>Su, Jing</creator><creator>Xu, Jiayue</creator><creator>Xu, Feng</creator><creator>Chu, Huiling</creator><creator>Fang, Shuai</creator><creator>Yang, Xingyu</creator><creator>Wu, Chengju</creator><creator>Cao, Zhili</creator><creator>Cao, Lei</creator><creator>Bing, Zhongxing</creator><creator>Liu, Hongsheng</creator><creator>Li, Li</creator><creator>Huang, Cheng</creator><creator>Qin, Yingzhi</creator><creator>Cui, Yushang</creator><creator>Han-Zhang, Han</creator><creator>Xiang, Jianxing</creator><creator>Liu, Hao</creator><creator>Guo, Xin</creator><creator>Li, Shanqing</creator><creator>Zhao, Heng</creator><creator>Zhang, Zhihong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4320-8739</orcidid><orcidid>https://orcid.org/0000-0001-8122-7992</orcidid><orcidid>https://orcid.org/0000-0002-1454-1604</orcidid></search><sort><creationdate>20210601</creationdate><title>Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning</title><author>Liang, Naixin ; Li, Bingsi ; Jia, Ziqi ; Wang, Chenyang ; Wu, Pancheng ; Zheng, Tao ; Wang, Yanyu ; Qiu, Fujun ; Wu, Yijun ; Su, Jing ; Xu, Jiayue ; Xu, Feng ; Chu, Huiling ; Fang, Shuai ; Yang, Xingyu ; Wu, Chengju ; Cao, Zhili ; Cao, Lei ; Bing, Zhongxing ; Liu, Hongsheng ; Li, Li ; Huang, Cheng ; Qin, Yingzhi ; Cui, Yushang ; Han-Zhang, Han ; Xiang, Jianxing ; Liu, Hao ; Guo, Xin ; Li, Shanqing ; Zhao, Heng ; Zhang, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-aaaf130c5dc1e6104c735fcbae11bb8fd523b6f13c13d4c1e39ab30bdd35a08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/23</topic><topic>631/114</topic><topic>631/337</topic><topic>631/61</topic><topic>631/67</topic><topic>692/53</topic><topic>Adult</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer screening</topic><topic>Case-Control Studies</topic><topic>Circulating Tumor DNA - blood</topic><topic>Circulating Tumor DNA - genetics</topic><topic>Classifiers</topic><topic>Confidence intervals</topic><topic>Deoxyribonucleic acid</topic><topic>Dilution</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA sequencing</topic><topic>Early Detection of Cancer - methods</topic><topic>Female</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - blood</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - pathology</topic><topic>Machine learning</topic><topic>Machine Learning - statistics &amp; numerical data</topic><topic>Male</topic><topic>Medical screening</topic><topic>Methylation</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Patients</topic><topic>Sequence analysis</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Subgroups</topic><topic>Surgery</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Naixin</creatorcontrib><creatorcontrib>Li, Bingsi</creatorcontrib><creatorcontrib>Jia, Ziqi</creatorcontrib><creatorcontrib>Wang, Chenyang</creatorcontrib><creatorcontrib>Wu, Pancheng</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Wang, Yanyu</creatorcontrib><creatorcontrib>Qiu, Fujun</creatorcontrib><creatorcontrib>Wu, Yijun</creatorcontrib><creatorcontrib>Su, Jing</creatorcontrib><creatorcontrib>Xu, Jiayue</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Chu, Huiling</creatorcontrib><creatorcontrib>Fang, Shuai</creatorcontrib><creatorcontrib>Yang, Xingyu</creatorcontrib><creatorcontrib>Wu, Chengju</creatorcontrib><creatorcontrib>Cao, Zhili</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Bing, Zhongxing</creatorcontrib><creatorcontrib>Liu, Hongsheng</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Qin, Yingzhi</creatorcontrib><creatorcontrib>Cui, Yushang</creatorcontrib><creatorcontrib>Han-Zhang, Han</creatorcontrib><creatorcontrib>Xiang, Jianxing</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Li, Shanqing</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Naixin</au><au>Li, Bingsi</au><au>Jia, Ziqi</au><au>Wang, Chenyang</au><au>Wu, Pancheng</au><au>Zheng, Tao</au><au>Wang, Yanyu</au><au>Qiu, Fujun</au><au>Wu, Yijun</au><au>Su, Jing</au><au>Xu, Jiayue</au><au>Xu, Feng</au><au>Chu, Huiling</au><au>Fang, Shuai</au><au>Yang, Xingyu</au><au>Wu, Chengju</au><au>Cao, Zhili</au><au>Cao, Lei</au><au>Bing, Zhongxing</au><au>Liu, Hongsheng</au><au>Li, Li</au><au>Huang, Cheng</au><au>Qin, Yingzhi</au><au>Cui, Yushang</au><au>Han-Zhang, Han</au><au>Xiang, Jianxing</au><au>Liu, Hao</au><au>Guo, Xin</au><au>Li, Shanqing</au><au>Zhao, Heng</au><au>Zhang, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>586</spage><epage>599</epage><pages>586-599</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of tumour-derived signals at dilution factors as low as 1 in 10,000. For a total of 308 patients with surgery-resectable lung cancer and 261 age- and sex-matched non-cancer control individuals recruited from two hospitals, the assay detected 52–81% of the patients at disease stages IA to III with a specificity of 96% (95% confidence interval (CI) 93–98%). In a subgroup of 115 individuals, the assay identified, at 100% specificity (95% CI 91–100%), nearly twice as many patients with cancer as those identified by ultradeep mutation sequencing analysis. The low amounts of ctDNA permitted by machine-learning-aided deep methylation sequencing could provide advantages in cancer screening and the assessment of treatment efficacy. Deep methylation sequencing aided by a machine-learning classifier of methylation patterns enables the detection of early cancers from plasma samples at dilution factors as low as 1/10,000.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34131323</pmid><doi>10.1038/s41551-021-00746-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4320-8739</orcidid><orcidid>https://orcid.org/0000-0001-8122-7992</orcidid><orcidid>https://orcid.org/0000-0002-1454-1604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2021-06, Vol.5 (6), p.586-599
issn 2157-846X
2157-846X
language eng
recordid cdi_proquest_miscellaneous_2541785143
source MEDLINE; Alma/SFX Local Collection
subjects 45
45/23
631/114
631/337
631/61
631/67
692/53
Adult
Biomarkers
Biomarkers, Tumor - blood
Biomarkers, Tumor - genetics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cancer
Cancer screening
Case-Control Studies
Circulating Tumor DNA - blood
Circulating Tumor DNA - genetics
Classifiers
Confidence intervals
Deoxyribonucleic acid
Dilution
DNA
DNA Methylation
DNA sequencing
Early Detection of Cancer - methods
Female
High-Throughput Nucleotide Sequencing
Humans
Learning algorithms
Lung cancer
Lung Neoplasms - blood
Lung Neoplasms - diagnosis
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Machine learning
Machine Learning - statistics & numerical data
Male
Medical screening
Methylation
Middle Aged
Mutation
Patients
Sequence analysis
Sequence Analysis, DNA - methods
Subgroups
Surgery
Tumors
title Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20detection%20of%20circulating%20tumour%20DNA%20via%20deep%20methylation%20sequencing%20aided%20by%20machine%20learning&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Liang,%20Naixin&rft.date=2021-06-01&rft.volume=5&rft.issue=6&rft.spage=586&rft.epage=599&rft.pages=586-599&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00746-5&rft_dat=%3Cproquest_cross%3E2541785143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542128462&rft_id=info:pmid/34131323&rfr_iscdi=true