Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores

Electrocatalytic two-electron (2e–) oxygen reduction reaction (ORR) has been regarded as an efficient strategy to achieve onsite H2O2 generation under ambient conditions. However, due to the sluggish kinetics and competitive reaction between 2e– and 4e– ORR, exploring more efficient ORR catalysts wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-06, Vol.13 (25), p.29551-29557
Hauptverfasser: Hu, Yezhou, Zhang, Jingjing, Shen, Tao, Li, Zhengrong, Chen, Ke, Lu, Yun, Zhang, Jian, Wang, Deli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29557
container_issue 25
container_start_page 29551
container_title ACS applied materials & interfaces
container_volume 13
creator Hu, Yezhou
Zhang, Jingjing
Shen, Tao
Li, Zhengrong
Chen, Ke
Lu, Yun
Zhang, Jian
Wang, Deli
description Electrocatalytic two-electron (2e–) oxygen reduction reaction (ORR) has been regarded as an efficient strategy to achieve onsite H2O2 generation under ambient conditions. However, due to the sluggish kinetics and competitive reaction between 2e– and 4e– ORR, exploring more efficient ORR catalysts with dominant 2e– ORR selectivity is of significance. Herein, hollow N-doped carbon spheres (HNCS) with abundant micropores through a template-directed method are presented. Consequently, the selectivity of the HNCS reaches ∼91.9% at 0.7 V (vs RHE), and the output for H2O2 production is up to 618.5 mmol gcatalyst –1 h–1 in 0.1 M KOH solution. The enhanced performance of HNCS for H2O2 electrosynthesis could be attributed to the hollow structure and heteroatom/defect/pore incorporation. The strategy presented here could shed light on the design of efficient carbon-based materials for improved 2e– ORR.
doi_str_mv 10.1021/acsami.1c05353
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2541785044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541785044</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-c920b35a35a751d078fa57118dbb4c90fb5e1d96f1983a730537c55b4b2588a23</originalsourceid><addsrcrecordid>eNo9kM9KAzEQxoMoWKtXzzmKsDV_u9ljqdUKtfWg55BkE5qSbtbNLr36Cr6iT2KkRRiYj5mPj5kfALcYTTAi-EGZpPZ-gg3ilNMzMMIVY4UgnJz_a8YuwVVKO4SmlCA-AmHhnDfeNj1cBGv6Lpqt3XujAnzrYj2Y3scGRgeXZENglssYQjzA9c_X92NsbQ3nqtN5vlZNTO3WdjbBg--3cKaHplY599WbLrYxL67BhVMh2ZtTH4OPp8X7fFmsNs8v89mqUJjTvjAVQZpylavkuEalcIqXGItaa2Yq5DS3uK6mDleCqpLmf0vDuWaacCEUoWNwd8xtu_g52NTLvU_GhqAaG4ckCWe4FBwxlq33R2umJ3dx6Jp8mMRI_iGVR6TyhJT-AhiXa54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541785044</pqid></control><display><type>article</type><title>Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores</title><source>American Chemical Society Journals</source><creator>Hu, Yezhou ; Zhang, Jingjing ; Shen, Tao ; Li, Zhengrong ; Chen, Ke ; Lu, Yun ; Zhang, Jian ; Wang, Deli</creator><creatorcontrib>Hu, Yezhou ; Zhang, Jingjing ; Shen, Tao ; Li, Zhengrong ; Chen, Ke ; Lu, Yun ; Zhang, Jian ; Wang, Deli</creatorcontrib><description>Electrocatalytic two-electron (2e–) oxygen reduction reaction (ORR) has been regarded as an efficient strategy to achieve onsite H2O2 generation under ambient conditions. However, due to the sluggish kinetics and competitive reaction between 2e– and 4e– ORR, exploring more efficient ORR catalysts with dominant 2e– ORR selectivity is of significance. Herein, hollow N-doped carbon spheres (HNCS) with abundant micropores through a template-directed method are presented. Consequently, the selectivity of the HNCS reaches ∼91.9% at 0.7 V (vs RHE), and the output for H2O2 production is up to 618.5 mmol gcatalyst –1 h–1 in 0.1 M KOH solution. The enhanced performance of HNCS for H2O2 electrosynthesis could be attributed to the hollow structure and heteroatom/defect/pore incorporation. The strategy presented here could shed light on the design of efficient carbon-based materials for improved 2e– ORR.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c05353</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-06, Vol.13 (25), p.29551-29557</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7584-3799 ; 0000-0003-2023-6478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c05353$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c05353$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Hu, Yezhou</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Li, Zhengrong</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Deli</creatorcontrib><title>Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Electrocatalytic two-electron (2e–) oxygen reduction reaction (ORR) has been regarded as an efficient strategy to achieve onsite H2O2 generation under ambient conditions. However, due to the sluggish kinetics and competitive reaction between 2e– and 4e– ORR, exploring more efficient ORR catalysts with dominant 2e– ORR selectivity is of significance. Herein, hollow N-doped carbon spheres (HNCS) with abundant micropores through a template-directed method are presented. Consequently, the selectivity of the HNCS reaches ∼91.9% at 0.7 V (vs RHE), and the output for H2O2 production is up to 618.5 mmol gcatalyst –1 h–1 in 0.1 M KOH solution. The enhanced performance of HNCS for H2O2 electrosynthesis could be attributed to the hollow structure and heteroatom/defect/pore incorporation. The strategy presented here could shed light on the design of efficient carbon-based materials for improved 2e– ORR.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQxoMoWKtXzzmKsDV_u9ljqdUKtfWg55BkE5qSbtbNLr36Cr6iT2KkRRiYj5mPj5kfALcYTTAi-EGZpPZ-gg3ilNMzMMIVY4UgnJz_a8YuwVVKO4SmlCA-AmHhnDfeNj1cBGv6Lpqt3XujAnzrYj2Y3scGRgeXZENglssYQjzA9c_X92NsbQ3nqtN5vlZNTO3WdjbBg--3cKaHplY599WbLrYxL67BhVMh2ZtTH4OPp8X7fFmsNs8v89mqUJjTvjAVQZpylavkuEalcIqXGItaa2Yq5DS3uK6mDleCqpLmf0vDuWaacCEUoWNwd8xtu_g52NTLvU_GhqAaG4ckCWe4FBwxlq33R2umJ3dx6Jp8mMRI_iGVR6TyhJT-AhiXa54</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Hu, Yezhou</creator><creator>Zhang, Jingjing</creator><creator>Shen, Tao</creator><creator>Li, Zhengrong</creator><creator>Chen, Ke</creator><creator>Lu, Yun</creator><creator>Zhang, Jian</creator><creator>Wang, Deli</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7584-3799</orcidid><orcidid>https://orcid.org/0000-0003-2023-6478</orcidid></search><sort><creationdate>20210630</creationdate><title>Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores</title><author>Hu, Yezhou ; Zhang, Jingjing ; Shen, Tao ; Li, Zhengrong ; Chen, Ke ; Lu, Yun ; Zhang, Jian ; Wang, Deli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-c920b35a35a751d078fa57118dbb4c90fb5e1d96f1983a730537c55b4b2588a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yezhou</creatorcontrib><creatorcontrib>Zhang, Jingjing</creatorcontrib><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Li, Zhengrong</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Deli</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yezhou</au><au>Zhang, Jingjing</au><au>Shen, Tao</au><au>Li, Zhengrong</au><au>Chen, Ke</au><au>Lu, Yun</au><au>Zhang, Jian</au><au>Wang, Deli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-06-30</date><risdate>2021</risdate><volume>13</volume><issue>25</issue><spage>29551</spage><epage>29557</epage><pages>29551-29557</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Electrocatalytic two-electron (2e–) oxygen reduction reaction (ORR) has been regarded as an efficient strategy to achieve onsite H2O2 generation under ambient conditions. However, due to the sluggish kinetics and competitive reaction between 2e– and 4e– ORR, exploring more efficient ORR catalysts with dominant 2e– ORR selectivity is of significance. Herein, hollow N-doped carbon spheres (HNCS) with abundant micropores through a template-directed method are presented. Consequently, the selectivity of the HNCS reaches ∼91.9% at 0.7 V (vs RHE), and the output for H2O2 production is up to 618.5 mmol gcatalyst –1 h–1 in 0.1 M KOH solution. The enhanced performance of HNCS for H2O2 electrosynthesis could be attributed to the hollow structure and heteroatom/defect/pore incorporation. The strategy presented here could shed light on the design of efficient carbon-based materials for improved 2e– ORR.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c05353</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7584-3799</orcidid><orcidid>https://orcid.org/0000-0003-2023-6478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-06, Vol.13 (25), p.29551-29557
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2541785044
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Efficient Electrochemical Production of H2O2 on Hollow N‑Doped Carbon Nanospheres with Abundant Micropores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Electrochemical%20Production%20of%20H2O2%20on%20Hollow%20N%E2%80%91Doped%20Carbon%20Nanospheres%20with%20Abundant%20Micropores&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hu,%20Yezhou&rft.date=2021-06-30&rft.volume=13&rft.issue=25&rft.spage=29551&rft.epage=29557&rft.pages=29551-29557&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c05353&rft_dat=%3Cproquest_acs_j%3E2541785044%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541785044&rft_id=info:pmid/&rfr_iscdi=true