Recursive identification and adaptive prediction of wastewater flows

The forecasting of wastewater flowrates can help to reduce overflows and the operational costs of wastewater pumping stations and treatment plants. Such flows normally exhibit a diurnal flow pattern, but with large variations dependent on rainfall and groundwater infiltration. These factors have to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 1991, Vol.27 (5), p.761-768
Hauptverfasser: Tan, P.C., Berger, C.S., Dabke, K.P., Mein, R.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 5
container_start_page 761
container_title Automatica (Oxford)
container_volume 27
creator Tan, P.C.
Berger, C.S.
Dabke, K.P.
Mein, R.G.
description The forecasting of wastewater flowrates can help to reduce overflows and the operational costs of wastewater pumping stations and treatment plants. Such flows normally exhibit a diurnal flow pattern, but with large variations dependent on rainfall and groundwater infiltration. These factors have to be taken into account in the forecasting model. In this paper, a direct k-step adaptive predictor is used to forecast the wastewater flowrate. The time-varying dynamics of dry and wet weather sewer flow are modelled using the multi-input/single-output ARMAX model. The parameters are recursively estimated at each time step by the method of extended least squares; a forecast of the wastewater flow k-steps ahead is then made on the basis of the updated model. The model uses the measured sewer flow, the prefiltered area-averaged rainfall intensities and/or dimensionless flow pattern. By using this new method to represent the rainfall disturbances, reliable predictions up to 2 hours ahead for wet weather sewer flow can be made. This method is illustrated for a sewered catchment in Melbourne, Australia, which has a sewer system separate from the stormwater system.
doi_str_mv 10.1016/0005-1098(91)90031-V
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25408210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000510989190031V</els_id><sourcerecordid>308151040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6edc5014d0498e3d2010dd503091c1433c90ece293253ef675642ff97c8b170b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKv_wMMeRPSwOpPsKxdB6hMKgmivIU0mENnu1mTb4r93-6BHPQ0z882Dj7FzhBsELG4BIE8RZHUl8VoCCEwnB2yAVSlSXonikA32yDE7ifGrTzOs-IA9vJNZhOiXlHhLTeedN7rzbZPoxiba6nm37s0DWW829dYlKx07WumOQuLqdhVP2ZHTdaSzXRyyz6fHj9FLOn57fh3dj1MjELq0IGtywMxCJisSlgOCtTkIkGgwE8JIIENcCp4LckWZFxl3TpammmIJUzFkl9u989B-Lyh2auajobrWDbWLqHieQcUR_gVRlLyEMu_BbAua0MYYyKl58DMdfhSCWrtVa3FqLU5JVBu3atKPXez262h07YJujI_72bx_QVRZj91tMeqlLD0FFY2nxvQuA5lO2db_fecXZxuMaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13727075</pqid></control><display><type>article</type><title>Recursive identification and adaptive prediction of wastewater flows</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Tan, P.C. ; Berger, C.S. ; Dabke, K.P. ; Mein, R.G.</creator><creatorcontrib>Tan, P.C. ; Berger, C.S. ; Dabke, K.P. ; Mein, R.G.</creatorcontrib><description>The forecasting of wastewater flowrates can help to reduce overflows and the operational costs of wastewater pumping stations and treatment plants. Such flows normally exhibit a diurnal flow pattern, but with large variations dependent on rainfall and groundwater infiltration. These factors have to be taken into account in the forecasting model. In this paper, a direct k-step adaptive predictor is used to forecast the wastewater flowrate. The time-varying dynamics of dry and wet weather sewer flow are modelled using the multi-input/single-output ARMAX model. The parameters are recursively estimated at each time step by the method of extended least squares; a forecast of the wastewater flow k-steps ahead is then made on the basis of the updated model. The model uses the measured sewer flow, the prefiltered area-averaged rainfall intensities and/or dimensionless flow pattern. By using this new method to represent the rainfall disturbances, reliable predictions up to 2 hours ahead for wet weather sewer flow can be made. This method is illustrated for a sewered catchment in Melbourne, Australia, which has a sewer system separate from the stormwater system.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/0005-1098(91)90031-V</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Australia ; civil engineering ; Exact sciences and technology ; flow ; forecasting ; identification ; least squares estimation ; modeling ; modelling ; optimal estimation ; parameter estimation ; Pollution ; prediction ; recursion ; Recursive estimation ; sewer flow ; Sewerage works: sewers, sewage treatment plants, outfalls ; wastewater flow ; Water treatment and pollution</subject><ispartof>Automatica (Oxford), 1991, Vol.27 (5), p.761-768</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6edc5014d0498e3d2010dd503091c1433c90ece293253ef675642ff97c8b170b3</citedby><cites>FETCH-LOGICAL-c310t-6edc5014d0498e3d2010dd503091c1433c90ece293253ef675642ff97c8b170b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0005-1098(91)90031-V$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27910,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5103384$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, P.C.</creatorcontrib><creatorcontrib>Berger, C.S.</creatorcontrib><creatorcontrib>Dabke, K.P.</creatorcontrib><creatorcontrib>Mein, R.G.</creatorcontrib><title>Recursive identification and adaptive prediction of wastewater flows</title><title>Automatica (Oxford)</title><description>The forecasting of wastewater flowrates can help to reduce overflows and the operational costs of wastewater pumping stations and treatment plants. Such flows normally exhibit a diurnal flow pattern, but with large variations dependent on rainfall and groundwater infiltration. These factors have to be taken into account in the forecasting model. In this paper, a direct k-step adaptive predictor is used to forecast the wastewater flowrate. The time-varying dynamics of dry and wet weather sewer flow are modelled using the multi-input/single-output ARMAX model. The parameters are recursively estimated at each time step by the method of extended least squares; a forecast of the wastewater flow k-steps ahead is then made on the basis of the updated model. The model uses the measured sewer flow, the prefiltered area-averaged rainfall intensities and/or dimensionless flow pattern. By using this new method to represent the rainfall disturbances, reliable predictions up to 2 hours ahead for wet weather sewer flow can be made. This method is illustrated for a sewered catchment in Melbourne, Australia, which has a sewer system separate from the stormwater system.</description><subject>Applied sciences</subject><subject>Australia</subject><subject>civil engineering</subject><subject>Exact sciences and technology</subject><subject>flow</subject><subject>forecasting</subject><subject>identification</subject><subject>least squares estimation</subject><subject>modeling</subject><subject>modelling</subject><subject>optimal estimation</subject><subject>parameter estimation</subject><subject>Pollution</subject><subject>prediction</subject><subject>recursion</subject><subject>Recursive estimation</subject><subject>sewer flow</subject><subject>Sewerage works: sewers, sewage treatment plants, outfalls</subject><subject>wastewater flow</subject><subject>Water treatment and pollution</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKv_wMMeRPSwOpPsKxdB6hMKgmivIU0mENnu1mTb4r93-6BHPQ0z882Dj7FzhBsELG4BIE8RZHUl8VoCCEwnB2yAVSlSXonikA32yDE7ifGrTzOs-IA9vJNZhOiXlHhLTeedN7rzbZPoxiba6nm37s0DWW829dYlKx07WumOQuLqdhVP2ZHTdaSzXRyyz6fHj9FLOn57fh3dj1MjELq0IGtywMxCJisSlgOCtTkIkGgwE8JIIENcCp4LckWZFxl3TpammmIJUzFkl9u989B-Lyh2auajobrWDbWLqHieQcUR_gVRlLyEMu_BbAua0MYYyKl58DMdfhSCWrtVa3FqLU5JVBu3atKPXez262h07YJujI_72bx_QVRZj91tMeqlLD0FFY2nxvQuA5lO2db_fecXZxuMaQ</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Tan, P.C.</creator><creator>Berger, C.S.</creator><creator>Dabke, K.P.</creator><creator>Mein, R.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1991</creationdate><title>Recursive identification and adaptive prediction of wastewater flows</title><author>Tan, P.C. ; Berger, C.S. ; Dabke, K.P. ; Mein, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6edc5014d0498e3d2010dd503091c1433c90ece293253ef675642ff97c8b170b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Australia</topic><topic>civil engineering</topic><topic>Exact sciences and technology</topic><topic>flow</topic><topic>forecasting</topic><topic>identification</topic><topic>least squares estimation</topic><topic>modeling</topic><topic>modelling</topic><topic>optimal estimation</topic><topic>parameter estimation</topic><topic>Pollution</topic><topic>prediction</topic><topic>recursion</topic><topic>Recursive estimation</topic><topic>sewer flow</topic><topic>Sewerage works: sewers, sewage treatment plants, outfalls</topic><topic>wastewater flow</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, P.C.</creatorcontrib><creatorcontrib>Berger, C.S.</creatorcontrib><creatorcontrib>Dabke, K.P.</creatorcontrib><creatorcontrib>Mein, R.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, P.C.</au><au>Berger, C.S.</au><au>Dabke, K.P.</au><au>Mein, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive identification and adaptive prediction of wastewater flows</atitle><jtitle>Automatica (Oxford)</jtitle><date>1991</date><risdate>1991</risdate><volume>27</volume><issue>5</issue><spage>761</spage><epage>768</epage><pages>761-768</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>The forecasting of wastewater flowrates can help to reduce overflows and the operational costs of wastewater pumping stations and treatment plants. Such flows normally exhibit a diurnal flow pattern, but with large variations dependent on rainfall and groundwater infiltration. These factors have to be taken into account in the forecasting model. In this paper, a direct k-step adaptive predictor is used to forecast the wastewater flowrate. The time-varying dynamics of dry and wet weather sewer flow are modelled using the multi-input/single-output ARMAX model. The parameters are recursively estimated at each time step by the method of extended least squares; a forecast of the wastewater flow k-steps ahead is then made on the basis of the updated model. The model uses the measured sewer flow, the prefiltered area-averaged rainfall intensities and/or dimensionless flow pattern. By using this new method to represent the rainfall disturbances, reliable predictions up to 2 hours ahead for wet weather sewer flow can be made. This method is illustrated for a sewered catchment in Melbourne, Australia, which has a sewer system separate from the stormwater system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0005-1098(91)90031-V</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 1991, Vol.27 (5), p.761-768
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_25408210
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Australia
civil engineering
Exact sciences and technology
flow
forecasting
identification
least squares estimation
modeling
modelling
optimal estimation
parameter estimation
Pollution
prediction
recursion
Recursive estimation
sewer flow
Sewerage works: sewers, sewage treatment plants, outfalls
wastewater flow
Water treatment and pollution
title Recursive identification and adaptive prediction of wastewater flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20identification%20and%20adaptive%20prediction%20of%20wastewater%20flows&rft.jtitle=Automatica%20(Oxford)&rft.au=Tan,%20P.C.&rft.date=1991&rft.volume=27&rft.issue=5&rft.spage=761&rft.epage=768&rft.pages=761-768&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/0005-1098(91)90031-V&rft_dat=%3Cproquest_cross%3E308151040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13727075&rft_id=info:pmid/&rft_els_id=000510989190031V&rfr_iscdi=true