Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18

Interface engineering is a critical method by which to efficiently enhance the photovoltaic performance of nonfullerene solar cells (NFSC). Herein, a series of metal–nanographene‐containing large transition metal involving dπ–pπ conjugated systems by way of the addition reactions of osmapentalynes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-07, Vol.33 (30), p.e2101279-n/a
Hauptverfasser: Liu, Longzhu, Chen, Shiyan, Qu, Yangyang, Gao, Xiang, Han, Liang, Lin, Zhiwei, Yang, Liulin, Wang, Wei, Zheng, Nan, Liang, Yongye, Tan, Yuanzhi, Xia, Haiping, He, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e2101279
container_title Advanced materials (Weinheim)
container_volume 33
creator Liu, Longzhu
Chen, Shiyan
Qu, Yangyang
Gao, Xiang
Han, Liang
Lin, Zhiwei
Yang, Liulin
Wang, Wei
Zheng, Nan
Liang, Yongye
Tan, Yuanzhi
Xia, Haiping
He, Feng
description Interface engineering is a critical method by which to efficiently enhance the photovoltaic performance of nonfullerene solar cells (NFSC). Herein, a series of metal–nanographene‐containing large transition metal involving dπ–pπ conjugated systems by way of the addition reactions of osmapentalynes and p‐diethynyl‐hexabenzocoronenes is reported. Conjugated extensions are engineered to optimize the π‐conjugation of these metal–nanographene molecules, which serve as alcohol‐soluble cathode interlayer (CIL) materials. Upon extension of the π‐conjugation, the power conversion efficiency (PCE) of PM6:BTP‐eC9‐based NFSCs increases from 16% to over 18%, giving the highest recorded PCE. It is deduced by X‐ray crystallographic analysis, interfacial contact methods, morphology characterization, and carrier dynamics that modification of hexabenzocoronenes‐styryl can effectively improve the short‐circuit current density (Jsc) and fill factor of organic solar cells (OSCs), mainly due to the strong and ordered charge transfer, more matching energy level alignments, better interfacial contacts between the active layer and the electrodes, and regulated morphology. Consequently, the carrier transport is largely facilitated, and the carrier recombination is simultaneously impeded. These new CIL materials are broadly able to enhance the photovoltaic properties of OSCs in other systems, which provides a promising potential to serve as CILs for higher‐quality OSCs. Newly synthesized hexabenzocoronene (HBC)–osmapentalyne complexes that combine fragments of graphene and metalla‐aromatics are emerging as cathode interlayer materials. Further extending the dπ–pπ conjugated systems of osmapentalynes, the most successful complex, in this work, HBC‐S is found to boost the efficiency of non‐fullerene solar cells to over 18%.
doi_str_mv 10.1002/adma.202101279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2540515362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555582798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-fd0e2f48348e76b1d0f6ac2028168d1210c5271bfc02bcaffe8798ac86dcc5893</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EEkvLlbMlLlyyjJ04ax9XYWkrFfYAnKNZZ9xNldjB3i3Nre_AG_IkuFoEEpeORprL94_mn5-xNwKWAkC-x27EpQQpQMiVecYWQklRVGDUc7YAU6rC1JV-yV6ldAsApoZ6wabP6MNNxGlPnn49_NymESfyBxxmT7wJ4zTQPSWOuXmDh33oiF_5A8UBZ4q893wbb9D3ln8JA0be0DAkvvF79Jb4xrne9uTtzMNdxoU-Zy8cDole_5ln7NvHzdfmsrjeXlw16-vClgpM4Tog6SpdVppW9U504Gq02Z0Wte5ENmmVXImdsyB3Fp0jvTIara47a5U25Rl7d9o7xfD9SOnQjn2y-Tj0FI6plaoCJVRZy4y-_Q-9Dcfo83WZyqXzO3WmlifKxpBSJNdOsR8xzq2A9jGA9jGA9m8AWWBOgh_9QPMTdLv-8Gn9T_sbtN2K1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555582798</pqid></control><display><type>article</type><title>Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Longzhu ; Chen, Shiyan ; Qu, Yangyang ; Gao, Xiang ; Han, Liang ; Lin, Zhiwei ; Yang, Liulin ; Wang, Wei ; Zheng, Nan ; Liang, Yongye ; Tan, Yuanzhi ; Xia, Haiping ; He, Feng</creator><creatorcontrib>Liu, Longzhu ; Chen, Shiyan ; Qu, Yangyang ; Gao, Xiang ; Han, Liang ; Lin, Zhiwei ; Yang, Liulin ; Wang, Wei ; Zheng, Nan ; Liang, Yongye ; Tan, Yuanzhi ; Xia, Haiping ; He, Feng</creatorcontrib><description>Interface engineering is a critical method by which to efficiently enhance the photovoltaic performance of nonfullerene solar cells (NFSC). Herein, a series of metal–nanographene‐containing large transition metal involving dπ–pπ conjugated systems by way of the addition reactions of osmapentalynes and p‐diethynyl‐hexabenzocoronenes is reported. Conjugated extensions are engineered to optimize the π‐conjugation of these metal–nanographene molecules, which serve as alcohol‐soluble cathode interlayer (CIL) materials. Upon extension of the π‐conjugation, the power conversion efficiency (PCE) of PM6:BTP‐eC9‐based NFSCs increases from 16% to over 18%, giving the highest recorded PCE. It is deduced by X‐ray crystallographic analysis, interfacial contact methods, morphology characterization, and carrier dynamics that modification of hexabenzocoronenes‐styryl can effectively improve the short‐circuit current density (Jsc) and fill factor of organic solar cells (OSCs), mainly due to the strong and ordered charge transfer, more matching energy level alignments, better interfacial contacts between the active layer and the electrodes, and regulated morphology. Consequently, the carrier transport is largely facilitated, and the carrier recombination is simultaneously impeded. These new CIL materials are broadly able to enhance the photovoltaic properties of OSCs in other systems, which provides a promising potential to serve as CILs for higher‐quality OSCs. Newly synthesized hexabenzocoronene (HBC)–osmapentalyne complexes that combine fragments of graphene and metalla‐aromatics are emerging as cathode interlayer materials. Further extending the dπ–pπ conjugated systems of osmapentalynes, the most successful complex, in this work, HBC‐S is found to boost the efficiency of non‐fullerene solar cells to over 18%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101279</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Carrier transport ; cathode interlayers ; Cathodes ; Charge transfer ; Circuits ; Conjugation ; Crystallography ; d π–p π conjugation ; Energy conversion efficiency ; Energy levels ; hexabenzocoronene ; Interlayers ; Morphology ; organic solar cells ; osmapentalyne ; Photovoltaic cells ; Solar cells ; Transition metals</subject><ispartof>Advanced materials (Weinheim), 2021-07, Vol.33 (30), p.e2101279-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-fd0e2f48348e76b1d0f6ac2028168d1210c5271bfc02bcaffe8798ac86dcc5893</citedby><cites>FETCH-LOGICAL-c3509-fd0e2f48348e76b1d0f6ac2028168d1210c5271bfc02bcaffe8798ac86dcc5893</cites><orcidid>0000-0002-8596-1366 ; 0000-0002-2688-6634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Longzhu</creatorcontrib><creatorcontrib>Chen, Shiyan</creatorcontrib><creatorcontrib>Qu, Yangyang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Han, Liang</creatorcontrib><creatorcontrib>Lin, Zhiwei</creatorcontrib><creatorcontrib>Yang, Liulin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Liang, Yongye</creatorcontrib><creatorcontrib>Tan, Yuanzhi</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><title>Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18</title><title>Advanced materials (Weinheim)</title><description>Interface engineering is a critical method by which to efficiently enhance the photovoltaic performance of nonfullerene solar cells (NFSC). Herein, a series of metal–nanographene‐containing large transition metal involving dπ–pπ conjugated systems by way of the addition reactions of osmapentalynes and p‐diethynyl‐hexabenzocoronenes is reported. Conjugated extensions are engineered to optimize the π‐conjugation of these metal–nanographene molecules, which serve as alcohol‐soluble cathode interlayer (CIL) materials. Upon extension of the π‐conjugation, the power conversion efficiency (PCE) of PM6:BTP‐eC9‐based NFSCs increases from 16% to over 18%, giving the highest recorded PCE. It is deduced by X‐ray crystallographic analysis, interfacial contact methods, morphology characterization, and carrier dynamics that modification of hexabenzocoronenes‐styryl can effectively improve the short‐circuit current density (Jsc) and fill factor of organic solar cells (OSCs), mainly due to the strong and ordered charge transfer, more matching energy level alignments, better interfacial contacts between the active layer and the electrodes, and regulated morphology. Consequently, the carrier transport is largely facilitated, and the carrier recombination is simultaneously impeded. These new CIL materials are broadly able to enhance the photovoltaic properties of OSCs in other systems, which provides a promising potential to serve as CILs for higher‐quality OSCs. Newly synthesized hexabenzocoronene (HBC)–osmapentalyne complexes that combine fragments of graphene and metalla‐aromatics are emerging as cathode interlayer materials. Further extending the dπ–pπ conjugated systems of osmapentalynes, the most successful complex, in this work, HBC‐S is found to boost the efficiency of non‐fullerene solar cells to over 18%.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>cathode interlayers</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Conjugation</subject><subject>Crystallography</subject><subject>d π–p π conjugation</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>hexabenzocoronene</subject><subject>Interlayers</subject><subject>Morphology</subject><subject>organic solar cells</subject><subject>osmapentalyne</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Transition metals</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EEkvLlbMlLlyyjJ04ax9XYWkrFfYAnKNZZ9xNldjB3i3Nre_AG_IkuFoEEpeORprL94_mn5-xNwKWAkC-x27EpQQpQMiVecYWQklRVGDUc7YAU6rC1JV-yV6ldAsApoZ6wabP6MNNxGlPnn49_NymESfyBxxmT7wJ4zTQPSWOuXmDh33oiF_5A8UBZ4q893wbb9D3ln8JA0be0DAkvvF79Jb4xrne9uTtzMNdxoU-Zy8cDole_5ln7NvHzdfmsrjeXlw16-vClgpM4Tog6SpdVppW9U504Gq02Z0Wte5ENmmVXImdsyB3Fp0jvTIara47a5U25Rl7d9o7xfD9SOnQjn2y-Tj0FI6plaoCJVRZy4y-_Q-9Dcfo83WZyqXzO3WmlifKxpBSJNdOsR8xzq2A9jGA9jGA9m8AWWBOgh_9QPMTdLv-8Gn9T_sbtN2K1w</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Liu, Longzhu</creator><creator>Chen, Shiyan</creator><creator>Qu, Yangyang</creator><creator>Gao, Xiang</creator><creator>Han, Liang</creator><creator>Lin, Zhiwei</creator><creator>Yang, Liulin</creator><creator>Wang, Wei</creator><creator>Zheng, Nan</creator><creator>Liang, Yongye</creator><creator>Tan, Yuanzhi</creator><creator>Xia, Haiping</creator><creator>He, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8596-1366</orcidid><orcidid>https://orcid.org/0000-0002-2688-6634</orcidid></search><sort><creationdate>20210701</creationdate><title>Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18</title><author>Liu, Longzhu ; Chen, Shiyan ; Qu, Yangyang ; Gao, Xiang ; Han, Liang ; Lin, Zhiwei ; Yang, Liulin ; Wang, Wei ; Zheng, Nan ; Liang, Yongye ; Tan, Yuanzhi ; Xia, Haiping ; He, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-fd0e2f48348e76b1d0f6ac2028168d1210c5271bfc02bcaffe8798ac86dcc5893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>cathode interlayers</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Conjugation</topic><topic>Crystallography</topic><topic>d π–p π conjugation</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>hexabenzocoronene</topic><topic>Interlayers</topic><topic>Morphology</topic><topic>organic solar cells</topic><topic>osmapentalyne</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Longzhu</creatorcontrib><creatorcontrib>Chen, Shiyan</creatorcontrib><creatorcontrib>Qu, Yangyang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Han, Liang</creatorcontrib><creatorcontrib>Lin, Zhiwei</creatorcontrib><creatorcontrib>Yang, Liulin</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zheng, Nan</creatorcontrib><creatorcontrib>Liang, Yongye</creatorcontrib><creatorcontrib>Tan, Yuanzhi</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Longzhu</au><au>Chen, Shiyan</au><au>Qu, Yangyang</au><au>Gao, Xiang</au><au>Han, Liang</au><au>Lin, Zhiwei</au><au>Yang, Liulin</au><au>Wang, Wei</au><au>Zheng, Nan</au><au>Liang, Yongye</au><au>Tan, Yuanzhi</au><au>Xia, Haiping</au><au>He, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>30</issue><spage>e2101279</spage><epage>n/a</epage><pages>e2101279-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Interface engineering is a critical method by which to efficiently enhance the photovoltaic performance of nonfullerene solar cells (NFSC). Herein, a series of metal–nanographene‐containing large transition metal involving dπ–pπ conjugated systems by way of the addition reactions of osmapentalynes and p‐diethynyl‐hexabenzocoronenes is reported. Conjugated extensions are engineered to optimize the π‐conjugation of these metal–nanographene molecules, which serve as alcohol‐soluble cathode interlayer (CIL) materials. Upon extension of the π‐conjugation, the power conversion efficiency (PCE) of PM6:BTP‐eC9‐based NFSCs increases from 16% to over 18%, giving the highest recorded PCE. It is deduced by X‐ray crystallographic analysis, interfacial contact methods, morphology characterization, and carrier dynamics that modification of hexabenzocoronenes‐styryl can effectively improve the short‐circuit current density (Jsc) and fill factor of organic solar cells (OSCs), mainly due to the strong and ordered charge transfer, more matching energy level alignments, better interfacial contacts between the active layer and the electrodes, and regulated morphology. Consequently, the carrier transport is largely facilitated, and the carrier recombination is simultaneously impeded. These new CIL materials are broadly able to enhance the photovoltaic properties of OSCs in other systems, which provides a promising potential to serve as CILs for higher‐quality OSCs. Newly synthesized hexabenzocoronene (HBC)–osmapentalyne complexes that combine fragments of graphene and metalla‐aromatics are emerging as cathode interlayer materials. Further extending the dπ–pπ conjugated systems of osmapentalynes, the most successful complex, in this work, HBC‐S is found to boost the efficiency of non‐fullerene solar cells to over 18%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202101279</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8596-1366</orcidid><orcidid>https://orcid.org/0000-0002-2688-6634</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-07, Vol.33 (30), p.e2101279-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2540515362
source Wiley Online Library Journals Frontfile Complete
subjects Carrier recombination
Carrier transport
cathode interlayers
Cathodes
Charge transfer
Circuits
Conjugation
Crystallography
d π–p π conjugation
Energy conversion efficiency
Energy levels
hexabenzocoronene
Interlayers
Morphology
organic solar cells
osmapentalyne
Photovoltaic cells
Solar cells
Transition metals
title Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanographene%E2%80%93Osmapentalyne%20Complexes%20as%20a%20Cathode%20Interlayer%20in%20Organic%20Solar%20Cells%20Enhance%20Efficiency%20over%2018&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Longzhu&rft.date=2021-07-01&rft.volume=33&rft.issue=30&rft.spage=e2101279&rft.epage=n/a&rft.pages=e2101279-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101279&rft_dat=%3Cproquest_cross%3E2555582798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555582798&rft_id=info:pmid/&rfr_iscdi=true