Dissecting the trade-off of grain number and size in wheat

Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2021-07, Vol.254 (1), p.1-16, Article 3
Hauptverfasser: Xie, Quan, Sparkes, Debbie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 1
container_title Planta
container_volume 254
creator Xie, Quan
Sparkes, Debbie L.
description Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m-2 through increased spikes m-2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m-2, spikes m-2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.
doi_str_mv 10.1007/s00425-021-03658-5
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2540512011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27294454</jstor_id><sourcerecordid>27294454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ed3343efd687b6d1d048a45ded9f9875b238536b080db6a1c069a6dfec429a03</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfQFACbtyMntzm4k7qFQpuug-ZyZl2SjtTkxlEn960Uyu4cJWQ8_1_Dh8h5wxuGEBy6wEkVxFwFoGIVRqpAzJkUvCIg0wPyRAg3CETakBOvF8AhGGSHJOBkIwlGU-G5O6h8h6LtqpntJ0jbZ2xGDVlSZuSzpypalp3qxwdNbWlvvpCGp4-5mjaU3JUmqXHs905ItOnx-n4JZq8Pb-O7ydRISVrI7RCSIGljdMkjy2zYTcjlUWblVmaqJyLVIk4hxRsHhtWQJyZ2JZYSJ4ZECNy3deuXfPeoW_1qvIFLpemxqbzmisJinFgLKBXf9BF07k6LLeleAqMq0Dxnipc473DUq9dtTLuUzPQG7G6F6uDWL0Vqzehy111l6_Q7iM_JgMgesCHUT1D9_v3v7UXfWrh28btW3nCMymVFN-T1Yqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540280125</pqid></control><display><type>article</type><title>Dissecting the trade-off of grain number and size in wheat</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Xie, Quan ; Sparkes, Debbie L.</creator><creatorcontrib>Xie, Quan ; Sparkes, Debbie L.</creatorcontrib><description>Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m-2 through increased spikes m-2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m-2, spikes m-2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03658-5</identifier><identifier>PMID: 34117927</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>ADP glucose pyrophosphorylase ; AGP2 gene ; Agriculture ; Biomedical and Life Sciences ; Chromosome Mapping ; Chromosomes ; Crop yield ; Ecology ; Edible Grain - genetics ; Forestry ; Gene mapping ; Genetic analysis ; Grain ; Haplotypes ; Inbreeding ; Life Sciences ; ORIGINAL ARTICLE ; Phenotype ; Phenotypic variations ; Plant Breeding ; Plant Sciences ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Spikes ; Tradeoffs ; Triticum - genetics ; Wheat</subject><ispartof>Planta, 2021-07, Vol.254 (1), p.1-16, Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ed3343efd687b6d1d048a45ded9f9875b238536b080db6a1c069a6dfec429a03</citedby><cites>FETCH-LOGICAL-c441t-ed3343efd687b6d1d048a45ded9f9875b238536b080db6a1c069a6dfec429a03</cites><orcidid>0000-0002-2045-374X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-021-03658-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-021-03658-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34117927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Quan</creatorcontrib><creatorcontrib>Sparkes, Debbie L.</creatorcontrib><title>Dissecting the trade-off of grain number and size in wheat</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m-2 through increased spikes m-2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m-2, spikes m-2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.</description><subject>ADP glucose pyrophosphorylase</subject><subject>AGP2 gene</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Crop yield</subject><subject>Ecology</subject><subject>Edible Grain - genetics</subject><subject>Forestry</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Grain</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>ORIGINAL ARTICLE</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Spikes</subject><subject>Tradeoffs</subject><subject>Triticum - genetics</subject><subject>Wheat</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKAzEUhoMotlZfQFACbtyMntzm4k7qFQpuug-ZyZl2SjtTkxlEn960Uyu4cJWQ8_1_Dh8h5wxuGEBy6wEkVxFwFoGIVRqpAzJkUvCIg0wPyRAg3CETakBOvF8AhGGSHJOBkIwlGU-G5O6h8h6LtqpntJ0jbZ2xGDVlSZuSzpypalp3qxwdNbWlvvpCGp4-5mjaU3JUmqXHs905ItOnx-n4JZq8Pb-O7ydRISVrI7RCSIGljdMkjy2zYTcjlUWblVmaqJyLVIk4hxRsHhtWQJyZ2JZYSJ4ZECNy3deuXfPeoW_1qvIFLpemxqbzmisJinFgLKBXf9BF07k6LLeleAqMq0Dxnipc473DUq9dtTLuUzPQG7G6F6uDWL0Vqzehy111l6_Q7iM_JgMgesCHUT1D9_v3v7UXfWrh28btW3nCMymVFN-T1Yqc</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xie, Quan</creator><creator>Sparkes, Debbie L.</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2045-374X</orcidid></search><sort><creationdate>20210701</creationdate><title>Dissecting the trade-off of grain number and size in wheat</title><author>Xie, Quan ; Sparkes, Debbie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ed3343efd687b6d1d048a45ded9f9875b238536b080db6a1c069a6dfec429a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADP glucose pyrophosphorylase</topic><topic>AGP2 gene</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Crop yield</topic><topic>Ecology</topic><topic>Edible Grain - genetics</topic><topic>Forestry</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Grain</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>ORIGINAL ARTICLE</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Spikes</topic><topic>Tradeoffs</topic><topic>Triticum - genetics</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Quan</creatorcontrib><creatorcontrib>Sparkes, Debbie L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Quan</au><au>Sparkes, Debbie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting the trade-off of grain number and size in wheat</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>254</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>3</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m-2 through increased spikes m-2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m-2, spikes m-2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>34117927</pmid><doi>10.1007/s00425-021-03658-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2045-374X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2021-07, Vol.254 (1), p.1-16, Article 3
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2540512011
source MEDLINE; SpringerLink Journals
subjects ADP glucose pyrophosphorylase
AGP2 gene
Agriculture
Biomedical and Life Sciences
Chromosome Mapping
Chromosomes
Crop yield
Ecology
Edible Grain - genetics
Forestry
Gene mapping
Genetic analysis
Grain
Haplotypes
Inbreeding
Life Sciences
ORIGINAL ARTICLE
Phenotype
Phenotypic variations
Plant Breeding
Plant Sciences
Quantitative trait loci
Quantitative Trait Loci - genetics
Spikes
Tradeoffs
Triticum - genetics
Wheat
title Dissecting the trade-off of grain number and size in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20the%20trade-off%20of%20grain%20number%20and%20size%20in%20wheat&rft.jtitle=Planta&rft.au=Xie,%20Quan&rft.date=2021-07-01&rft.volume=254&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=3&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03658-5&rft_dat=%3Cjstor_proqu%3E27294454%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540280125&rft_id=info:pmid/34117927&rft_jstor_id=27294454&rfr_iscdi=true