Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms

Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-10, Vol.259, p.118352-118352, Article 118352
Hauptverfasser: Razori, María Valeria, Martín, Pamela L., Maidagan, Paula M., Barosso, Ismael R., Ciriaci, Nadia, Andermatten, Romina B., Sánchez Pozzi, Enrique J., Basiglio, Cecilia L., Ruiz, María Laura, Roma, Marcelo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118352
container_issue
container_start_page 118352
container_title Life sciences (1973)
container_volume 259
creator Razori, María Valeria
Martín, Pamela L.
Maidagan, Paula M.
Barosso, Ismael R.
Ciriaci, Nadia
Andermatten, Romina B.
Sánchez Pozzi, Enrique J.
Basiglio, Cecilia L.
Ruiz, María Laura
Roma, Marcelo G.
description Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1β, IL-6, and TNF-α plasma levels. SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion. [Display omitted]
doi_str_mv 10.1016/j.lfs.2020.118352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2540487201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002432052031105X</els_id><sourcerecordid>2540487201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-a5d33c86601e05863dd4bb36b07780caddadc43da53989b79484e255b4ac02d53</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRSMEEk3DB7CzxIZNmvIrccMKjXiMNAiJx9pybIdxy7GDKxmpP4c_xVGzmsWwKlX53Cpd36Z5SeFAgXZvToc44oEBqz1VXLJHzY6q_thCx-njZgfARMsZyKfNM8QTAEjZ813z5_scSk45Grvk5ImZfAy5mMUjiWHOc45nNNbemhKcb0Nyq_WO2NscPS4GA5KQSOWRDGcSprnku5B-kS9lZmRck11CTm_Jt4qTPJKlmIS2hHkbm0hMcmTOuLT3HyZfT6aAEz5vnowmon_xr-6bnx8__Lj63N58_XR99f6mtYKLpTXScW5V1wH1IFXHnRPDwLsB-l6BNc4ZV0lnJD-q49AfhRKeSTkIY4E5yffN68veauH3Ws3pKaD1MZrk84qaSQFC9Qzo_1HBVdcrVuu-eXUPPeW1VIfbQpCCCik2il4oWzJi8aOeS5hMOWsKestXn3TNV2_56ku-VfPuovH1U-6CLxpt8KmmE4q3i3Y5PKD-C0eEsXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505414544</pqid></control><display><type>article</type><title>Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms</title><source>Elsevier ScienceDirect Journals</source><creator>Razori, María Valeria ; Martín, Pamela L. ; Maidagan, Paula M. ; Barosso, Ismael R. ; Ciriaci, Nadia ; Andermatten, Romina B. ; Sánchez Pozzi, Enrique J. ; Basiglio, Cecilia L. ; Ruiz, María Laura ; Roma, Marcelo G.</creator><creatorcontrib>Razori, María Valeria ; Martín, Pamela L. ; Maidagan, Paula M. ; Barosso, Ismael R. ; Ciriaci, Nadia ; Andermatten, Romina B. ; Sánchez Pozzi, Enrique J. ; Basiglio, Cecilia L. ; Ruiz, María Laura ; Roma, Marcelo G.</creatorcontrib><description>Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1β, IL-6, and TNF-α plasma levels. SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion. [Display omitted]</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2020.118352</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Anti-inflammatory agents ; Bile ; bile salts ; Cholestasis ; Confocal microscopy ; excretion ; fluorescent antibody technique ; Gallbladder diseases ; Glutathione ; Glutathione transporter ; Hepatocellular transporters ; Homeostasis ; IL-1β ; Immunofluorescence ; Inflammation ; Interleukin 6 ; Internalization ; ligands ; Lipopolysaccharide-induced cholestasis ; Lipopolysaccharides ; Localization ; males ; Multidrug resistance ; Multidrug resistance-associated protein 2 ; Normalizing ; Plasma levels ; Post-transcription ; Proteins ; Recovery ; Salts ; Spironolactone ; Substrates ; therapeutics ; transcription (genetics) ; transporters ; Tumor necrosis factor-α</subject><ispartof>Life sciences (1973), 2020-10, Vol.259, p.118352-118352, Article 118352</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-a5d33c86601e05863dd4bb36b07780caddadc43da53989b79484e255b4ac02d53</citedby><cites>FETCH-LOGICAL-c434t-a5d33c86601e05863dd4bb36b07780caddadc43da53989b79484e255b4ac02d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002432052031105X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Razori, María Valeria</creatorcontrib><creatorcontrib>Martín, Pamela L.</creatorcontrib><creatorcontrib>Maidagan, Paula M.</creatorcontrib><creatorcontrib>Barosso, Ismael R.</creatorcontrib><creatorcontrib>Ciriaci, Nadia</creatorcontrib><creatorcontrib>Andermatten, Romina B.</creatorcontrib><creatorcontrib>Sánchez Pozzi, Enrique J.</creatorcontrib><creatorcontrib>Basiglio, Cecilia L.</creatorcontrib><creatorcontrib>Ruiz, María Laura</creatorcontrib><creatorcontrib>Roma, Marcelo G.</creatorcontrib><title>Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms</title><title>Life sciences (1973)</title><description>Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1β, IL-6, and TNF-α plasma levels. SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion. [Display omitted]</description><subject>Anti-inflammatory agents</subject><subject>Bile</subject><subject>bile salts</subject><subject>Cholestasis</subject><subject>Confocal microscopy</subject><subject>excretion</subject><subject>fluorescent antibody technique</subject><subject>Gallbladder diseases</subject><subject>Glutathione</subject><subject>Glutathione transporter</subject><subject>Hepatocellular transporters</subject><subject>Homeostasis</subject><subject>IL-1β</subject><subject>Immunofluorescence</subject><subject>Inflammation</subject><subject>Interleukin 6</subject><subject>Internalization</subject><subject>ligands</subject><subject>Lipopolysaccharide-induced cholestasis</subject><subject>Lipopolysaccharides</subject><subject>Localization</subject><subject>males</subject><subject>Multidrug resistance</subject><subject>Multidrug resistance-associated protein 2</subject><subject>Normalizing</subject><subject>Plasma levels</subject><subject>Post-transcription</subject><subject>Proteins</subject><subject>Recovery</subject><subject>Salts</subject><subject>Spironolactone</subject><subject>Substrates</subject><subject>therapeutics</subject><subject>transcription (genetics)</subject><subject>transporters</subject><subject>Tumor necrosis factor-α</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcuO1DAQRSMEEk3DB7CzxIZNmvIrccMKjXiMNAiJx9pybIdxy7GDKxmpP4c_xVGzmsWwKlX53Cpd36Z5SeFAgXZvToc44oEBqz1VXLJHzY6q_thCx-njZgfARMsZyKfNM8QTAEjZ813z5_scSk45Grvk5ImZfAy5mMUjiWHOc45nNNbemhKcb0Nyq_WO2NscPS4GA5KQSOWRDGcSprnku5B-kS9lZmRck11CTm_Jt4qTPJKlmIS2hHkbm0hMcmTOuLT3HyZfT6aAEz5vnowmon_xr-6bnx8__Lj63N58_XR99f6mtYKLpTXScW5V1wH1IFXHnRPDwLsB-l6BNc4ZV0lnJD-q49AfhRKeSTkIY4E5yffN68veauH3Ws3pKaD1MZrk84qaSQFC9Qzo_1HBVdcrVuu-eXUPPeW1VIfbQpCCCik2il4oWzJi8aOeS5hMOWsKestXn3TNV2_56ku-VfPuovH1U-6CLxpt8KmmE4q3i3Y5PKD-C0eEsXM</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Razori, María Valeria</creator><creator>Martín, Pamela L.</creator><creator>Maidagan, Paula M.</creator><creator>Barosso, Ismael R.</creator><creator>Ciriaci, Nadia</creator><creator>Andermatten, Romina B.</creator><creator>Sánchez Pozzi, Enrique J.</creator><creator>Basiglio, Cecilia L.</creator><creator>Ruiz, María Laura</creator><creator>Roma, Marcelo G.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20201015</creationdate><title>Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms</title><author>Razori, María Valeria ; Martín, Pamela L. ; Maidagan, Paula M. ; Barosso, Ismael R. ; Ciriaci, Nadia ; Andermatten, Romina B. ; Sánchez Pozzi, Enrique J. ; Basiglio, Cecilia L. ; Ruiz, María Laura ; Roma, Marcelo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-a5d33c86601e05863dd4bb36b07780caddadc43da53989b79484e255b4ac02d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-inflammatory agents</topic><topic>Bile</topic><topic>bile salts</topic><topic>Cholestasis</topic><topic>Confocal microscopy</topic><topic>excretion</topic><topic>fluorescent antibody technique</topic><topic>Gallbladder diseases</topic><topic>Glutathione</topic><topic>Glutathione transporter</topic><topic>Hepatocellular transporters</topic><topic>Homeostasis</topic><topic>IL-1β</topic><topic>Immunofluorescence</topic><topic>Inflammation</topic><topic>Interleukin 6</topic><topic>Internalization</topic><topic>ligands</topic><topic>Lipopolysaccharide-induced cholestasis</topic><topic>Lipopolysaccharides</topic><topic>Localization</topic><topic>males</topic><topic>Multidrug resistance</topic><topic>Multidrug resistance-associated protein 2</topic><topic>Normalizing</topic><topic>Plasma levels</topic><topic>Post-transcription</topic><topic>Proteins</topic><topic>Recovery</topic><topic>Salts</topic><topic>Spironolactone</topic><topic>Substrates</topic><topic>therapeutics</topic><topic>transcription (genetics)</topic><topic>transporters</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razori, María Valeria</creatorcontrib><creatorcontrib>Martín, Pamela L.</creatorcontrib><creatorcontrib>Maidagan, Paula M.</creatorcontrib><creatorcontrib>Barosso, Ismael R.</creatorcontrib><creatorcontrib>Ciriaci, Nadia</creatorcontrib><creatorcontrib>Andermatten, Romina B.</creatorcontrib><creatorcontrib>Sánchez Pozzi, Enrique J.</creatorcontrib><creatorcontrib>Basiglio, Cecilia L.</creatorcontrib><creatorcontrib>Ruiz, María Laura</creatorcontrib><creatorcontrib>Roma, Marcelo G.</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razori, María Valeria</au><au>Martín, Pamela L.</au><au>Maidagan, Paula M.</au><au>Barosso, Ismael R.</au><au>Ciriaci, Nadia</au><au>Andermatten, Romina B.</au><au>Sánchez Pozzi, Enrique J.</au><au>Basiglio, Cecilia L.</au><au>Ruiz, María Laura</au><au>Roma, Marcelo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms</atitle><jtitle>Life sciences (1973)</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>259</volume><spage>118352</spage><epage>118352</epage><pages>118352-118352</pages><artnum>118352</artnum><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1β, IL-6, and TNF-α plasma levels. SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.lfs.2020.118352</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2020-10, Vol.259, p.118352-118352, Article 118352
issn 0024-3205
1879-0631
language eng
recordid cdi_proquest_miscellaneous_2540487201
source Elsevier ScienceDirect Journals
subjects Anti-inflammatory agents
Bile
bile salts
Cholestasis
Confocal microscopy
excretion
fluorescent antibody technique
Gallbladder diseases
Glutathione
Glutathione transporter
Hepatocellular transporters
Homeostasis
IL-1β
Immunofluorescence
Inflammation
Interleukin 6
Internalization
ligands
Lipopolysaccharide-induced cholestasis
Lipopolysaccharides
Localization
males
Multidrug resistance
Multidrug resistance-associated protein 2
Normalizing
Plasma levels
Post-transcription
Proteins
Recovery
Salts
Spironolactone
Substrates
therapeutics
transcription (genetics)
transporters
Tumor necrosis factor-α
title Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spironolactone%20ameliorates%20lipopolysaccharide-induced%20cholestasis%20in%20rats%20by%20improving%20Mrp2%20function:%20Role%20of%20transcriptional%20and%20post-transcriptional%20mechanisms&rft.jtitle=Life%20sciences%20(1973)&rft.au=Razori,%20Mar%C3%ADa%20Valeria&rft.date=2020-10-15&rft.volume=259&rft.spage=118352&rft.epage=118352&rft.pages=118352-118352&rft.artnum=118352&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2020.118352&rft_dat=%3Cproquest_cross%3E2540487201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505414544&rft_id=info:pmid/&rft_els_id=S002432052031105X&rfr_iscdi=true