On‐chip determination of tissue‐specific metastatic potential of breast cancer cells
Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chi...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2021-10, Vol.118 (10), p.3799-3810 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3810 |
---|---|
container_issue | 10 |
container_start_page | 3799 |
container_title | Biotechnology and bioengineering |
container_volume | 118 |
creator | Firatligil‐Yildirir, Burcu Bati‐Ayaz, Gizem Tahmaz, Ismail Bilgen, Muge Pesen‐Okvur, Devrim Yalcin‐Ozuysal, Ozden |
description | Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were used for the quantitative assessment of invasion and extravasation towards specific tissues. Lung, liver and breast microenvironments were simulated in the chips using tissue‐specific cells embedded in matrigel. In the IC‐chip, invasive MDA‐MB‐231, but not noninvasive MCF‐7 breast cancer cells invaded into lung and liver microenvironments. In the EX‐chip, MDA‐MB‐231 cells extravasated more into the lung compared to the liver and breast microenvironments. In addition, lung‐specific MDA‐MB‐231 clone invaded and extravasated into the lung microenvironment more efficiently than the bone‐specific clone. Both invasion/chemotaxis and extravasation results were in agreement with published clinical data. Collectively, our results show that IC‐chip and EX‐chip, simulating tissue‐specific microenvironments, can distinguish different in vivo metastatic phenotypes, in vitro. Determination of tissue‐specific metastatic potential of breast cancer cells is expected to improve diagnosis and help select the ideal therapy.
Two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were developed for the quantitative assessment of invasion and extravasation of breast cancer cells towards specific tissues. IC‐chip and EX‐chip, simulating lung‐, liver‐ and breast‐specific microenvironments in vitro, can distinguish different in vivo metastatic phenotypes. |
doi_str_mv | 10.1002/bit.27855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539880979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539880979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3935-8125891ff9ee156cb8dc59f93d8d1cc6bfb56ddc5c24e023588a8f45ff11e0e73</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_AgipvTg19ACl700C1pmjY56vBlMNhlgrfSpk8wo28mKbKbH8HP6Ccxs9OD4CnkyS9_Hv4InRM8JRhHs0K7aZRyxg7QmGCRhjgS-BCNMcZJSJmIRujE2o2_pjxJjtGIxsR_JPEYPa-az_cP-aK7oAQHptZN7nTbBK0KnLa2B_9sO5BaaRnU4HLrPJBB1zponM6rnSwM-Hkg80aCCSRUlT1FRyqvLJztzwl6ur9bzx_D5ephMb9ZhpIKykJOIsYFUUoAEJbIgpeSCSVoyUsiZVKogiWln8koBhxRxnnOVcyUIgQwpHSCrobczrSvPViX1druNsgbaHubRYwKzn0pwtPLP3TT9qbx23mVkoSIlFGvrgclTWutAZV1Rte52WYEZ7u6M1939l23txf7xL6oofyVP_16MBvAm65g-39SdrtYD5FfvOuLuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571619753</pqid></control><display><type>article</type><title>On‐chip determination of tissue‐specific metastatic potential of breast cancer cells</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Firatligil‐Yildirir, Burcu ; Bati‐Ayaz, Gizem ; Tahmaz, Ismail ; Bilgen, Muge ; Pesen‐Okvur, Devrim ; Yalcin‐Ozuysal, Ozden</creator><creatorcontrib>Firatligil‐Yildirir, Burcu ; Bati‐Ayaz, Gizem ; Tahmaz, Ismail ; Bilgen, Muge ; Pesen‐Okvur, Devrim ; Yalcin‐Ozuysal, Ozden</creatorcontrib><description>Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were used for the quantitative assessment of invasion and extravasation towards specific tissues. Lung, liver and breast microenvironments were simulated in the chips using tissue‐specific cells embedded in matrigel. In the IC‐chip, invasive MDA‐MB‐231, but not noninvasive MCF‐7 breast cancer cells invaded into lung and liver microenvironments. In the EX‐chip, MDA‐MB‐231 cells extravasated more into the lung compared to the liver and breast microenvironments. In addition, lung‐specific MDA‐MB‐231 clone invaded and extravasated into the lung microenvironment more efficiently than the bone‐specific clone. Both invasion/chemotaxis and extravasation results were in agreement with published clinical data. Collectively, our results show that IC‐chip and EX‐chip, simulating tissue‐specific microenvironments, can distinguish different in vivo metastatic phenotypes, in vitro. Determination of tissue‐specific metastatic potential of breast cancer cells is expected to improve diagnosis and help select the ideal therapy.
Two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were developed for the quantitative assessment of invasion and extravasation of breast cancer cells towards specific tissues. IC‐chip and EX‐chip, simulating lung‐, liver‐ and breast‐specific microenvironments in vitro, can distinguish different in vivo metastatic phenotypes.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27855</identifier><identifier>PMID: 34110014</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biochips ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell Movement ; Chemotaxis ; Extravasation ; Female ; Human Umbilical Vein Endothelial Cells ; Humans ; In vivo methods and tests ; Integrated circuits ; invasion ; Invasiveness ; Lab-On-A-Chip Devices ; lab‐on‐a‐chip ; Liver ; Lung cancer ; Lungs ; MCF-7 Cells ; Metastases ; Metastasis ; Microenvironments ; Models, Biological ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Phenotypes ; Platforms ; Tissues ; Tumor Microenvironment</subject><ispartof>Biotechnology and bioengineering, 2021-10, Vol.118 (10), p.3799-3810</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3935-8125891ff9ee156cb8dc59f93d8d1cc6bfb56ddc5c24e023588a8f45ff11e0e73</citedby><cites>FETCH-LOGICAL-c3935-8125891ff9ee156cb8dc59f93d8d1cc6bfb56ddc5c24e023588a8f45ff11e0e73</cites><orcidid>0000-0001-8333-4193 ; 0000-0003-0552-368X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27855$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27855$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34110014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Firatligil‐Yildirir, Burcu</creatorcontrib><creatorcontrib>Bati‐Ayaz, Gizem</creatorcontrib><creatorcontrib>Tahmaz, Ismail</creatorcontrib><creatorcontrib>Bilgen, Muge</creatorcontrib><creatorcontrib>Pesen‐Okvur, Devrim</creatorcontrib><creatorcontrib>Yalcin‐Ozuysal, Ozden</creatorcontrib><title>On‐chip determination of tissue‐specific metastatic potential of breast cancer cells</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were used for the quantitative assessment of invasion and extravasation towards specific tissues. Lung, liver and breast microenvironments were simulated in the chips using tissue‐specific cells embedded in matrigel. In the IC‐chip, invasive MDA‐MB‐231, but not noninvasive MCF‐7 breast cancer cells invaded into lung and liver microenvironments. In the EX‐chip, MDA‐MB‐231 cells extravasated more into the lung compared to the liver and breast microenvironments. In addition, lung‐specific MDA‐MB‐231 clone invaded and extravasated into the lung microenvironment more efficiently than the bone‐specific clone. Both invasion/chemotaxis and extravasation results were in agreement with published clinical data. Collectively, our results show that IC‐chip and EX‐chip, simulating tissue‐specific microenvironments, can distinguish different in vivo metastatic phenotypes, in vitro. Determination of tissue‐specific metastatic potential of breast cancer cells is expected to improve diagnosis and help select the ideal therapy.
Two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were developed for the quantitative assessment of invasion and extravasation of breast cancer cells towards specific tissues. IC‐chip and EX‐chip, simulating lung‐, liver‐ and breast‐specific microenvironments in vitro, can distinguish different in vivo metastatic phenotypes.</description><subject>Biochips</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Movement</subject><subject>Chemotaxis</subject><subject>Extravasation</subject><subject>Female</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Integrated circuits</subject><subject>invasion</subject><subject>Invasiveness</subject><subject>Lab-On-A-Chip Devices</subject><subject>lab‐on‐a‐chip</subject><subject>Liver</subject><subject>Lung cancer</subject><subject>Lungs</subject><subject>MCF-7 Cells</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Microenvironments</subject><subject>Models, Biological</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Metastasis</subject><subject>Phenotypes</subject><subject>Platforms</subject><subject>Tissues</subject><subject>Tumor Microenvironment</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LwzAYB_AgipvTg19ACl700C1pmjY56vBlMNhlgrfSpk8wo28mKbKbH8HP6Ccxs9OD4CnkyS9_Hv4InRM8JRhHs0K7aZRyxg7QmGCRhjgS-BCNMcZJSJmIRujE2o2_pjxJjtGIxsR_JPEYPa-az_cP-aK7oAQHptZN7nTbBK0KnLa2B_9sO5BaaRnU4HLrPJBB1zponM6rnSwM-Hkg80aCCSRUlT1FRyqvLJztzwl6ur9bzx_D5ephMb9ZhpIKykJOIsYFUUoAEJbIgpeSCSVoyUsiZVKogiWln8koBhxRxnnOVcyUIgQwpHSCrobczrSvPViX1druNsgbaHubRYwKzn0pwtPLP3TT9qbx23mVkoSIlFGvrgclTWutAZV1Rte52WYEZ7u6M1939l23txf7xL6oofyVP_16MBvAm65g-39SdrtYD5FfvOuLuw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Firatligil‐Yildirir, Burcu</creator><creator>Bati‐Ayaz, Gizem</creator><creator>Tahmaz, Ismail</creator><creator>Bilgen, Muge</creator><creator>Pesen‐Okvur, Devrim</creator><creator>Yalcin‐Ozuysal, Ozden</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8333-4193</orcidid><orcidid>https://orcid.org/0000-0003-0552-368X</orcidid></search><sort><creationdate>202110</creationdate><title>On‐chip determination of tissue‐specific metastatic potential of breast cancer cells</title><author>Firatligil‐Yildirir, Burcu ; Bati‐Ayaz, Gizem ; Tahmaz, Ismail ; Bilgen, Muge ; Pesen‐Okvur, Devrim ; Yalcin‐Ozuysal, Ozden</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3935-8125891ff9ee156cb8dc59f93d8d1cc6bfb56ddc5c24e023588a8f45ff11e0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochips</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Movement</topic><topic>Chemotaxis</topic><topic>Extravasation</topic><topic>Female</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Integrated circuits</topic><topic>invasion</topic><topic>Invasiveness</topic><topic>Lab-On-A-Chip Devices</topic><topic>lab‐on‐a‐chip</topic><topic>Liver</topic><topic>Lung cancer</topic><topic>Lungs</topic><topic>MCF-7 Cells</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Microenvironments</topic><topic>Models, Biological</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Metastasis</topic><topic>Phenotypes</topic><topic>Platforms</topic><topic>Tissues</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firatligil‐Yildirir, Burcu</creatorcontrib><creatorcontrib>Bati‐Ayaz, Gizem</creatorcontrib><creatorcontrib>Tahmaz, Ismail</creatorcontrib><creatorcontrib>Bilgen, Muge</creatorcontrib><creatorcontrib>Pesen‐Okvur, Devrim</creatorcontrib><creatorcontrib>Yalcin‐Ozuysal, Ozden</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firatligil‐Yildirir, Burcu</au><au>Bati‐Ayaz, Gizem</au><au>Tahmaz, Ismail</au><au>Bilgen, Muge</au><au>Pesen‐Okvur, Devrim</au><au>Yalcin‐Ozuysal, Ozden</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On‐chip determination of tissue‐specific metastatic potential of breast cancer cells</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2021-10</date><risdate>2021</risdate><volume>118</volume><issue>10</issue><spage>3799</spage><epage>3810</epage><pages>3799-3810</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were used for the quantitative assessment of invasion and extravasation towards specific tissues. Lung, liver and breast microenvironments were simulated in the chips using tissue‐specific cells embedded in matrigel. In the IC‐chip, invasive MDA‐MB‐231, but not noninvasive MCF‐7 breast cancer cells invaded into lung and liver microenvironments. In the EX‐chip, MDA‐MB‐231 cells extravasated more into the lung compared to the liver and breast microenvironments. In addition, lung‐specific MDA‐MB‐231 clone invaded and extravasated into the lung microenvironment more efficiently than the bone‐specific clone. Both invasion/chemotaxis and extravasation results were in agreement with published clinical data. Collectively, our results show that IC‐chip and EX‐chip, simulating tissue‐specific microenvironments, can distinguish different in vivo metastatic phenotypes, in vitro. Determination of tissue‐specific metastatic potential of breast cancer cells is expected to improve diagnosis and help select the ideal therapy.
Two organ‐on‐chip platforms, invasion/chemotaxis (IC‐chip) and extravasation (EX‐chip) were developed for the quantitative assessment of invasion and extravasation of breast cancer cells towards specific tissues. IC‐chip and EX‐chip, simulating lung‐, liver‐ and breast‐specific microenvironments in vitro, can distinguish different in vivo metastatic phenotypes.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34110014</pmid><doi>10.1002/bit.27855</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8333-4193</orcidid><orcidid>https://orcid.org/0000-0003-0552-368X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2021-10, Vol.118 (10), p.3799-3810 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2539880979 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Biochips Breast cancer Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Movement Chemotaxis Extravasation Female Human Umbilical Vein Endothelial Cells Humans In vivo methods and tests Integrated circuits invasion Invasiveness Lab-On-A-Chip Devices lab‐on‐a‐chip Liver Lung cancer Lungs MCF-7 Cells Metastases Metastasis Microenvironments Models, Biological Neoplasm Invasiveness Neoplasm Metastasis Phenotypes Platforms Tissues Tumor Microenvironment |
title | On‐chip determination of tissue‐specific metastatic potential of breast cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%E2%80%90chip%20determination%20of%20tissue%E2%80%90specific%20metastatic%20potential%20of%20breast%20cancer%20cells&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Firatligil%E2%80%90Yildirir,%20Burcu&rft.date=2021-10&rft.volume=118&rft.issue=10&rft.spage=3799&rft.epage=3810&rft.pages=3799-3810&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27855&rft_dat=%3Cproquest_cross%3E2539880979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571619753&rft_id=info:pmid/34110014&rfr_iscdi=true |