Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment

Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2021-06, Vol.10 (32), Article 58688
Hauptverfasser: Nicolas-Boluda, Alba, Vaquero, Javier, Vimeux, Lene, Guilbert, Thomas, Barrin, Sarah, Kantari-Mimoun, Chahrazade, Ponzo, Matteo, Renault, Gilles, Deptula, Piotr, Pogoda, Katarzyna, Bucki, Robert, Cascone, Ilaria, Courty, Jose, Fouassier, Laura, Gazeau, Florence, Donnadieu, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 32
container_start_page
container_title eLife
container_volume 10
creator Nicolas-Boluda, Alba
Vaquero, Javier
Vimeux, Lene
Guilbert, Thomas
Barrin, Sarah
Kantari-Mimoun, Chahrazade
Ponzo, Matteo
Renault, Gilles
Deptula, Piotr
Pogoda, Katarzyna
Bucki, Robert
Cascone, Ilaria
Courty, Jose
Fouassier, Laura
Gazeau, Florence
Donnadieu, Emmanuel
description Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.
doi_str_mv 10.7554/eLife.58688
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539524005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665196685</galeid><doaj_id>oai_doaj_org_article_fcd6d60f522e467b954160f81e927d69</doaj_id><sourcerecordid>A665196685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-d82e67702d9acb9fd00c7caa90fd01605447b1b8de07b53f25b815c6f7c754843</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbKm98g8MeGORXZPM5GNuhLJ-tLCgaAXvQiZzMps6k9Qks-q_N7NbWrd4YUJIOHnOe5LDWxTPMVpySuvXsLYGllQwIR4VxwRRtECi_vb4r_NRcRrjNcqD10Lg5mlxVNUYMVTT42K6mkYfypisMeCs68sAWwjRelemTfBTvym1HwbVgyt18DEO1n2fOes2trVpBu14E_wWYnlVahiGcrR9ULsb5bq8kl18ervAZQqg0gguPSueGDVEOL3dT4qv799drS4W648fLlfn64WmgqdFJwgwzhHpGqXbxnQIaa6ValA-YoZoXfMWt6IDxFtaGUJbgalmhmtOa1FXJ8XlXrfz6lreBDuq8Ft6ZeUu4EMvVUhWDyCN7ljHkKGEQM1429A6VzACQ0N4x5qs9WavdTO1I3Q6fyOo4UD08MbZjez9VgqCKtJUWeBsL7B5kHZxvpZzDFVVhXHDtzizL2-LBf9jgpjkaOPcW-XAT1ESWjWU1AjRjL54gF77Kbjc1kxlCFHK-T3Vq_xZ64zPb9SzqDxnjOKGMTFrLf9B5dnBaLV3YGyOHyScHSRkJsGv1KspRnn55fMh-2rP7mwUwNw1ASM5m1nuzCx3Zr6nf0LrTdQWnIa7jGxmxgjJurOv536J_6dXNu3cufKTS9UfmPUFQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595205577</pqid></control><display><type>article</type><title>Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Nicolas-Boluda, Alba ; Vaquero, Javier ; Vimeux, Lene ; Guilbert, Thomas ; Barrin, Sarah ; Kantari-Mimoun, Chahrazade ; Ponzo, Matteo ; Renault, Gilles ; Deptula, Piotr ; Pogoda, Katarzyna ; Bucki, Robert ; Cascone, Ilaria ; Courty, Jose ; Fouassier, Laura ; Gazeau, Florence ; Donnadieu, Emmanuel</creator><creatorcontrib>Nicolas-Boluda, Alba ; Vaquero, Javier ; Vimeux, Lene ; Guilbert, Thomas ; Barrin, Sarah ; Kantari-Mimoun, Chahrazade ; Ponzo, Matteo ; Renault, Gilles ; Deptula, Piotr ; Pogoda, Katarzyna ; Bucki, Robert ; Cascone, Ilaria ; Courty, Jose ; Fouassier, Laura ; Gazeau, Florence ; Donnadieu, Emmanuel</creatorcontrib><description>Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.58688</identifier><identifier>PMID: 34106045</identifier><language>eng</language><publisher>CAMBRIDGE: Elife Sciences Publications Ltd</publisher><subject>Animal models ; Antibodies ; Antigens ; Biology ; Biomarkers ; Breast cancer ; Cancer Biology ; Cancer therapies ; Cell adhesion &amp; migration ; Cell migration ; Cellular Biology ; Cholangiocarcinoma ; Collagen ; Crosslinked polymers ; Cytotoxicity ; Enzymes ; Extracellular matrix ; Fibroblasts ; Immune checkpoint inhibitors ; Immunotherapy ; Kinases ; Life Sciences ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Lymphocytes ; Lymphocytes T ; Lysyl oxidase ; Mechanical properties ; Metastasis ; Microscopy ; Pancreatic cancer ; PD-1 protein ; Science &amp; Technology ; Solid tumors ; stiffness ; T cells ; T lymphocytes ; tumor ; Tumor microenvironment ; Tumors</subject><ispartof>eLife, 2021-06, Vol.10 (32), Article 58688</ispartof><rights>COPYRIGHT 2021 eLife Science Publications, Ltd.</rights><rights>2021, Nicolas-Boluda et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021, Nicolas-Boluda et al 2021 Nicolas-Boluda et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>157</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000662266800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c587t-d82e67702d9acb9fd00c7caa90fd01605447b1b8de07b53f25b815c6f7c754843</citedby><cites>FETCH-LOGICAL-c587t-d82e67702d9acb9fd00c7caa90fd01605447b1b8de07b53f25b815c6f7c754843</cites><orcidid>0000-0002-3029-8755 ; 0000-0001-5069-0730 ; 0000-0003-4903-8926 ; 0000-0002-0280-7989 ; 0000-0001-6994-3435 ; 0000-0001-6377-5610 ; 0000-0002-4985-7254 ; 0000-0001-6511-0612 ; 0000-0002-5615-7467 ; 0000-0002-0636-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,39262,53795,53797</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03331197$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicolas-Boluda, Alba</creatorcontrib><creatorcontrib>Vaquero, Javier</creatorcontrib><creatorcontrib>Vimeux, Lene</creatorcontrib><creatorcontrib>Guilbert, Thomas</creatorcontrib><creatorcontrib>Barrin, Sarah</creatorcontrib><creatorcontrib>Kantari-Mimoun, Chahrazade</creatorcontrib><creatorcontrib>Ponzo, Matteo</creatorcontrib><creatorcontrib>Renault, Gilles</creatorcontrib><creatorcontrib>Deptula, Piotr</creatorcontrib><creatorcontrib>Pogoda, Katarzyna</creatorcontrib><creatorcontrib>Bucki, Robert</creatorcontrib><creatorcontrib>Cascone, Ilaria</creatorcontrib><creatorcontrib>Courty, Jose</creatorcontrib><creatorcontrib>Fouassier, Laura</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Donnadieu, Emmanuel</creatorcontrib><title>Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment</title><title>eLife</title><addtitle>ELIFE</addtitle><description>Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.</description><subject>Animal models</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Breast cancer</subject><subject>Cancer Biology</subject><subject>Cancer therapies</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Cellular Biology</subject><subject>Cholangiocarcinoma</subject><subject>Collagen</subject><subject>Crosslinked polymers</subject><subject>Cytotoxicity</subject><subject>Enzymes</subject><subject>Extracellular matrix</subject><subject>Fibroblasts</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunotherapy</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lysyl oxidase</subject><subject>Mechanical properties</subject><subject>Metastasis</subject><subject>Microscopy</subject><subject>Pancreatic cancer</subject><subject>PD-1 protein</subject><subject>Science &amp; Technology</subject><subject>Solid tumors</subject><subject>stiffness</subject><subject>T cells</subject><subject>T lymphocytes</subject><subject>tumor</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbKm98g8MeGORXZPM5GNuhLJ-tLCgaAXvQiZzMps6k9Qks-q_N7NbWrd4YUJIOHnOe5LDWxTPMVpySuvXsLYGllQwIR4VxwRRtECi_vb4r_NRcRrjNcqD10Lg5mlxVNUYMVTT42K6mkYfypisMeCs68sAWwjRelemTfBTvym1HwbVgyt18DEO1n2fOes2trVpBu14E_wWYnlVahiGcrR9ULsb5bq8kl18ervAZQqg0gguPSueGDVEOL3dT4qv799drS4W648fLlfn64WmgqdFJwgwzhHpGqXbxnQIaa6ValA-YoZoXfMWt6IDxFtaGUJbgalmhmtOa1FXJ8XlXrfz6lreBDuq8Ft6ZeUu4EMvVUhWDyCN7ljHkKGEQM1429A6VzACQ0N4x5qs9WavdTO1I3Q6fyOo4UD08MbZjez9VgqCKtJUWeBsL7B5kHZxvpZzDFVVhXHDtzizL2-LBf9jgpjkaOPcW-XAT1ESWjWU1AjRjL54gF77Kbjc1kxlCFHK-T3Vq_xZ64zPb9SzqDxnjOKGMTFrLf9B5dnBaLV3YGyOHyScHSRkJsGv1KspRnn55fMh-2rP7mwUwNw1ASM5m1nuzCx3Zr6nf0LrTdQWnIa7jGxmxgjJurOv536J_6dXNu3cufKTS9UfmPUFQQ</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Nicolas-Boluda, Alba</creator><creator>Vaquero, Javier</creator><creator>Vimeux, Lene</creator><creator>Guilbert, Thomas</creator><creator>Barrin, Sarah</creator><creator>Kantari-Mimoun, Chahrazade</creator><creator>Ponzo, Matteo</creator><creator>Renault, Gilles</creator><creator>Deptula, Piotr</creator><creator>Pogoda, Katarzyna</creator><creator>Bucki, Robert</creator><creator>Cascone, Ilaria</creator><creator>Courty, Jose</creator><creator>Fouassier, Laura</creator><creator>Gazeau, Florence</creator><creator>Donnadieu, Emmanuel</creator><general>Elife Sciences Publications Ltd</general><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publication</general><general>eLife Sciences Publications, Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3029-8755</orcidid><orcidid>https://orcid.org/0000-0001-5069-0730</orcidid><orcidid>https://orcid.org/0000-0003-4903-8926</orcidid><orcidid>https://orcid.org/0000-0002-0280-7989</orcidid><orcidid>https://orcid.org/0000-0001-6994-3435</orcidid><orcidid>https://orcid.org/0000-0001-6377-5610</orcidid><orcidid>https://orcid.org/0000-0002-4985-7254</orcidid><orcidid>https://orcid.org/0000-0001-6511-0612</orcidid><orcidid>https://orcid.org/0000-0002-5615-7467</orcidid><orcidid>https://orcid.org/0000-0002-0636-4425</orcidid></search><sort><creationdate>20210609</creationdate><title>Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment</title><author>Nicolas-Boluda, Alba ; Vaquero, Javier ; Vimeux, Lene ; Guilbert, Thomas ; Barrin, Sarah ; Kantari-Mimoun, Chahrazade ; Ponzo, Matteo ; Renault, Gilles ; Deptula, Piotr ; Pogoda, Katarzyna ; Bucki, Robert ; Cascone, Ilaria ; Courty, Jose ; Fouassier, Laura ; Gazeau, Florence ; Donnadieu, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-d82e67702d9acb9fd00c7caa90fd01605447b1b8de07b53f25b815c6f7c754843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Breast cancer</topic><topic>Cancer Biology</topic><topic>Cancer therapies</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Cellular Biology</topic><topic>Cholangiocarcinoma</topic><topic>Collagen</topic><topic>Crosslinked polymers</topic><topic>Cytotoxicity</topic><topic>Enzymes</topic><topic>Extracellular matrix</topic><topic>Fibroblasts</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunotherapy</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lysyl oxidase</topic><topic>Mechanical properties</topic><topic>Metastasis</topic><topic>Microscopy</topic><topic>Pancreatic cancer</topic><topic>PD-1 protein</topic><topic>Science &amp; Technology</topic><topic>Solid tumors</topic><topic>stiffness</topic><topic>T cells</topic><topic>T lymphocytes</topic><topic>tumor</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas-Boluda, Alba</creatorcontrib><creatorcontrib>Vaquero, Javier</creatorcontrib><creatorcontrib>Vimeux, Lene</creatorcontrib><creatorcontrib>Guilbert, Thomas</creatorcontrib><creatorcontrib>Barrin, Sarah</creatorcontrib><creatorcontrib>Kantari-Mimoun, Chahrazade</creatorcontrib><creatorcontrib>Ponzo, Matteo</creatorcontrib><creatorcontrib>Renault, Gilles</creatorcontrib><creatorcontrib>Deptula, Piotr</creatorcontrib><creatorcontrib>Pogoda, Katarzyna</creatorcontrib><creatorcontrib>Bucki, Robert</creatorcontrib><creatorcontrib>Cascone, Ilaria</creatorcontrib><creatorcontrib>Courty, Jose</creatorcontrib><creatorcontrib>Fouassier, Laura</creatorcontrib><creatorcontrib>Gazeau, Florence</creatorcontrib><creatorcontrib>Donnadieu, Emmanuel</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas-Boluda, Alba</au><au>Vaquero, Javier</au><au>Vimeux, Lene</au><au>Guilbert, Thomas</au><au>Barrin, Sarah</au><au>Kantari-Mimoun, Chahrazade</au><au>Ponzo, Matteo</au><au>Renault, Gilles</au><au>Deptula, Piotr</au><au>Pogoda, Katarzyna</au><au>Bucki, Robert</au><au>Cascone, Ilaria</au><au>Courty, Jose</au><au>Fouassier, Laura</au><au>Gazeau, Florence</au><au>Donnadieu, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment</atitle><jtitle>eLife</jtitle><stitle>ELIFE</stitle><date>2021-06-09</date><risdate>2021</risdate><volume>10</volume><issue>32</issue><artnum>58688</artnum><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.</abstract><cop>CAMBRIDGE</cop><pub>Elife Sciences Publications Ltd</pub><pmid>34106045</pmid><doi>10.7554/eLife.58688</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-3029-8755</orcidid><orcidid>https://orcid.org/0000-0001-5069-0730</orcidid><orcidid>https://orcid.org/0000-0003-4903-8926</orcidid><orcidid>https://orcid.org/0000-0002-0280-7989</orcidid><orcidid>https://orcid.org/0000-0001-6994-3435</orcidid><orcidid>https://orcid.org/0000-0001-6377-5610</orcidid><orcidid>https://orcid.org/0000-0002-4985-7254</orcidid><orcidid>https://orcid.org/0000-0001-6511-0612</orcidid><orcidid>https://orcid.org/0000-0002-5615-7467</orcidid><orcidid>https://orcid.org/0000-0002-0636-4425</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2021-06, Vol.10 (32), Article 58688
issn 2050-084X
2050-084X
language eng
recordid cdi_proquest_miscellaneous_2539524005
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Animal models
Antibodies
Antigens
Biology
Biomarkers
Breast cancer
Cancer Biology
Cancer therapies
Cell adhesion & migration
Cell migration
Cellular Biology
Cholangiocarcinoma
Collagen
Crosslinked polymers
Cytotoxicity
Enzymes
Extracellular matrix
Fibroblasts
Immune checkpoint inhibitors
Immunotherapy
Kinases
Life Sciences
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Lymphocytes
Lymphocytes T
Lysyl oxidase
Mechanical properties
Metastasis
Microscopy
Pancreatic cancer
PD-1 protein
Science & Technology
Solid tumors
stiffness
T cells
T lymphocytes
tumor
Tumor microenvironment
Tumors
title Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20stiffening%20reversion%20through%20collagen%20crosslinking%20inhibition%20improves%20T%20cell%20migration%20and%20anti-PD-1%20treatment&rft.jtitle=eLife&rft.au=Nicolas-Boluda,%20Alba&rft.date=2021-06-09&rft.volume=10&rft.issue=32&rft.artnum=58688&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.58688&rft_dat=%3Cgale_proqu%3EA665196685%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595205577&rft_id=info:pmid/34106045&rft_galeid=A665196685&rft_doaj_id=oai_doaj_org_article_fcd6d60f522e467b954160f81e927d69&rfr_iscdi=true