A versatile living polymerization method for aromatic amides
Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagen...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-07, Vol.13 (7), p.705-713 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 713 |
---|---|
container_issue | 7 |
container_start_page | 705 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Pal, Subhajit Nguyen, Dinh Phuong Trinh Molliet, Angélique Alizadeh, Mahshid Crochet, Aurélien Ortuso, Roberto D. Petri-Fink, Alke Kilbinger, Andreas F. M. |
description | Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(
o
-methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow
p
-aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups.
Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers. |
doi_str_mv | 10.1038/s41557-021-00712-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539521447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539521447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcFN26iuXm0DbgZBl8w4EbXIUnTsUPbjEk7MP56oxUFF67uvYfvHC4HoXMgV0BYeR05CFFgQgETUgDF7ADNoBACc8bl4c_OyDE6iXFDSC4Y5DN0s8h2LkQ9NK3L2mbX9Ots69t950LznlTfZ50bXn2V1T5kOvguiTbTXVO5eIqOat1Gd_Y95-jl7vZ5-YBXT_ePy8UKWybzARcVLcqSWlNWkBsJTGjuhNG10NoAkxWriTayTBcHWVlSEwc1Ay6NMVYaNkeXU-42-LfRxUF1TbSubXXv_BgVFUwKCpwXCb34g278GPr0XaJ4XpQ8L0Wi6ETZ4GMMrlbb0HQ67BUQ9VmomgpVqVD1VahiycQmU0xwv3bhN_of1wew-Hi7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546784685</pqid></control><display><type>article</type><title>A versatile living polymerization method for aromatic amides</title><source>Nature</source><source>SpringerNature Journals</source><creator>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</creator><creatorcontrib>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</creatorcontrib><description>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(
o
-methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow
p
-aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups.
Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00712-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/455/941 ; 639/638/455/959 ; Amides ; Amines ; Amino acids ; Analytical Chemistry ; Aromatic compounds ; Biochemistry ; Block copolymers ; Carboxylic acids ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chlorides ; Condensation polymerization ; Copolymers ; Dimers ; Functional groups ; Growth kinetics ; Initiators ; Inorganic Chemistry ; Iodides ; Monomers ; Organic Chemistry ; para-Aminobenzoic acid ; Phosphine ; Phosphines ; Physical Chemistry ; Polymers ; Reagents ; Terpolymers</subject><ispartof>Nature chemistry, 2021-07, Vol.13 (7), p.705-713</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</citedby><cites>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</cites><orcidid>0000-0003-3952-7849 ; 0000-0002-6470-4600 ; 0000-0002-4763-2764 ; 0000-0002-2929-7499 ; 0000-0002-0197-7281 ; 0000-0001-6260-8642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-021-00712-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-021-00712-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pal, Subhajit</creatorcontrib><creatorcontrib>Nguyen, Dinh Phuong Trinh</creatorcontrib><creatorcontrib>Molliet, Angélique</creatorcontrib><creatorcontrib>Alizadeh, Mahshid</creatorcontrib><creatorcontrib>Crochet, Aurélien</creatorcontrib><creatorcontrib>Ortuso, Roberto D.</creatorcontrib><creatorcontrib>Petri-Fink, Alke</creatorcontrib><creatorcontrib>Kilbinger, Andreas F. M.</creatorcontrib><title>A versatile living polymerization method for aromatic amides</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(
o
-methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow
p
-aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups.
Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</description><subject>639/638/455/941</subject><subject>639/638/455/959</subject><subject>Amides</subject><subject>Amines</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Aromatic compounds</subject><subject>Biochemistry</subject><subject>Block copolymers</subject><subject>Carboxylic acids</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chlorides</subject><subject>Condensation polymerization</subject><subject>Copolymers</subject><subject>Dimers</subject><subject>Functional groups</subject><subject>Growth kinetics</subject><subject>Initiators</subject><subject>Inorganic Chemistry</subject><subject>Iodides</subject><subject>Monomers</subject><subject>Organic Chemistry</subject><subject>para-Aminobenzoic acid</subject><subject>Phosphine</subject><subject>Phosphines</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Terpolymers</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcFN26iuXm0DbgZBl8w4EbXIUnTsUPbjEk7MP56oxUFF67uvYfvHC4HoXMgV0BYeR05CFFgQgETUgDF7ADNoBACc8bl4c_OyDE6iXFDSC4Y5DN0s8h2LkQ9NK3L2mbX9Ots69t950LznlTfZ50bXn2V1T5kOvguiTbTXVO5eIqOat1Gd_Y95-jl7vZ5-YBXT_ePy8UKWybzARcVLcqSWlNWkBsJTGjuhNG10NoAkxWriTayTBcHWVlSEwc1Ay6NMVYaNkeXU-42-LfRxUF1TbSubXXv_BgVFUwKCpwXCb34g278GPr0XaJ4XpQ8L0Wi6ETZ4GMMrlbb0HQ67BUQ9VmomgpVqVD1VahiycQmU0xwv3bhN_of1wew-Hi7</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Pal, Subhajit</creator><creator>Nguyen, Dinh Phuong Trinh</creator><creator>Molliet, Angélique</creator><creator>Alizadeh, Mahshid</creator><creator>Crochet, Aurélien</creator><creator>Ortuso, Roberto D.</creator><creator>Petri-Fink, Alke</creator><creator>Kilbinger, Andreas F. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3952-7849</orcidid><orcidid>https://orcid.org/0000-0002-6470-4600</orcidid><orcidid>https://orcid.org/0000-0002-4763-2764</orcidid><orcidid>https://orcid.org/0000-0002-2929-7499</orcidid><orcidid>https://orcid.org/0000-0002-0197-7281</orcidid><orcidid>https://orcid.org/0000-0001-6260-8642</orcidid></search><sort><creationdate>20210701</creationdate><title>A versatile living polymerization method for aromatic amides</title><author>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/455/941</topic><topic>639/638/455/959</topic><topic>Amides</topic><topic>Amines</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Aromatic compounds</topic><topic>Biochemistry</topic><topic>Block copolymers</topic><topic>Carboxylic acids</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chlorides</topic><topic>Condensation polymerization</topic><topic>Copolymers</topic><topic>Dimers</topic><topic>Functional groups</topic><topic>Growth kinetics</topic><topic>Initiators</topic><topic>Inorganic Chemistry</topic><topic>Iodides</topic><topic>Monomers</topic><topic>Organic Chemistry</topic><topic>para-Aminobenzoic acid</topic><topic>Phosphine</topic><topic>Phosphines</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Terpolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Subhajit</creatorcontrib><creatorcontrib>Nguyen, Dinh Phuong Trinh</creatorcontrib><creatorcontrib>Molliet, Angélique</creatorcontrib><creatorcontrib>Alizadeh, Mahshid</creatorcontrib><creatorcontrib>Crochet, Aurélien</creatorcontrib><creatorcontrib>Ortuso, Roberto D.</creatorcontrib><creatorcontrib>Petri-Fink, Alke</creatorcontrib><creatorcontrib>Kilbinger, Andreas F. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Subhajit</au><au>Nguyen, Dinh Phuong Trinh</au><au>Molliet, Angélique</au><au>Alizadeh, Mahshid</au><au>Crochet, Aurélien</au><au>Ortuso, Roberto D.</au><au>Petri-Fink, Alke</au><au>Kilbinger, Andreas F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A versatile living polymerization method for aromatic amides</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>705</spage><epage>713</epage><pages>705-713</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(
o
-methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow
p
-aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups.
Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-021-00712-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3952-7849</orcidid><orcidid>https://orcid.org/0000-0002-6470-4600</orcidid><orcidid>https://orcid.org/0000-0002-4763-2764</orcidid><orcidid>https://orcid.org/0000-0002-2929-7499</orcidid><orcidid>https://orcid.org/0000-0002-0197-7281</orcidid><orcidid>https://orcid.org/0000-0001-6260-8642</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-07, Vol.13 (7), p.705-713 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2539521447 |
source | Nature; SpringerNature Journals |
subjects | 639/638/455/941 639/638/455/959 Amides Amines Amino acids Analytical Chemistry Aromatic compounds Biochemistry Block copolymers Carboxylic acids Chemistry Chemistry and Materials Science Chemistry/Food Science Chlorides Condensation polymerization Copolymers Dimers Functional groups Growth kinetics Initiators Inorganic Chemistry Iodides Monomers Organic Chemistry para-Aminobenzoic acid Phosphine Phosphines Physical Chemistry Polymers Reagents Terpolymers |
title | A versatile living polymerization method for aromatic amides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20versatile%20living%20polymerization%20method%20for%20aromatic%20amides&rft.jtitle=Nature%20chemistry&rft.au=Pal,%20Subhajit&rft.date=2021-07-01&rft.volume=13&rft.issue=7&rft.spage=705&rft.epage=713&rft.pages=705-713&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00712-3&rft_dat=%3Cproquest_cross%3E2539521447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546784685&rft_id=info:pmid/&rfr_iscdi=true |