A versatile living polymerization method for aromatic amides

Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-07, Vol.13 (7), p.705-713
Hauptverfasser: Pal, Subhajit, Nguyen, Dinh Phuong Trinh, Molliet, Angélique, Alizadeh, Mahshid, Crochet, Aurélien, Ortuso, Roberto D., Petri-Fink, Alke, Kilbinger, Andreas F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 7
container_start_page 705
container_title Nature chemistry
container_volume 13
creator Pal, Subhajit
Nguyen, Dinh Phuong Trinh
Molliet, Angélique
Alizadeh, Mahshid
Crochet, Aurélien
Ortuso, Roberto D.
Petri-Fink, Alke
Kilbinger, Andreas F. M.
description Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri( o -methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow p -aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups. Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.
doi_str_mv 10.1038/s41557-021-00712-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539521447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539521447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcFN26iuXm0DbgZBl8w4EbXIUnTsUPbjEk7MP56oxUFF67uvYfvHC4HoXMgV0BYeR05CFFgQgETUgDF7ADNoBACc8bl4c_OyDE6iXFDSC4Y5DN0s8h2LkQ9NK3L2mbX9Ots69t950LznlTfZ50bXn2V1T5kOvguiTbTXVO5eIqOat1Gd_Y95-jl7vZ5-YBXT_ePy8UKWybzARcVLcqSWlNWkBsJTGjuhNG10NoAkxWriTayTBcHWVlSEwc1Ay6NMVYaNkeXU-42-LfRxUF1TbSubXXv_BgVFUwKCpwXCb34g278GPr0XaJ4XpQ8L0Wi6ETZ4GMMrlbb0HQ67BUQ9VmomgpVqVD1VahiycQmU0xwv3bhN_of1wew-Hi7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546784685</pqid></control><display><type>article</type><title>A versatile living polymerization method for aromatic amides</title><source>Nature</source><source>SpringerNature Journals</source><creator>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</creator><creatorcontrib>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</creatorcontrib><description>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri( o -methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow p -aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups. Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00712-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/455/941 ; 639/638/455/959 ; Amides ; Amines ; Amino acids ; Analytical Chemistry ; Aromatic compounds ; Biochemistry ; Block copolymers ; Carboxylic acids ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chlorides ; Condensation polymerization ; Copolymers ; Dimers ; Functional groups ; Growth kinetics ; Initiators ; Inorganic Chemistry ; Iodides ; Monomers ; Organic Chemistry ; para-Aminobenzoic acid ; Phosphine ; Phosphines ; Physical Chemistry ; Polymers ; Reagents ; Terpolymers</subject><ispartof>Nature chemistry, 2021-07, Vol.13 (7), p.705-713</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</citedby><cites>FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</cites><orcidid>0000-0003-3952-7849 ; 0000-0002-6470-4600 ; 0000-0002-4763-2764 ; 0000-0002-2929-7499 ; 0000-0002-0197-7281 ; 0000-0001-6260-8642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-021-00712-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-021-00712-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pal, Subhajit</creatorcontrib><creatorcontrib>Nguyen, Dinh Phuong Trinh</creatorcontrib><creatorcontrib>Molliet, Angélique</creatorcontrib><creatorcontrib>Alizadeh, Mahshid</creatorcontrib><creatorcontrib>Crochet, Aurélien</creatorcontrib><creatorcontrib>Ortuso, Roberto D.</creatorcontrib><creatorcontrib>Petri-Fink, Alke</creatorcontrib><creatorcontrib>Kilbinger, Andreas F. M.</creatorcontrib><title>A versatile living polymerization method for aromatic amides</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri( o -methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow p -aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups. Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</description><subject>639/638/455/941</subject><subject>639/638/455/959</subject><subject>Amides</subject><subject>Amines</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Aromatic compounds</subject><subject>Biochemistry</subject><subject>Block copolymers</subject><subject>Carboxylic acids</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chlorides</subject><subject>Condensation polymerization</subject><subject>Copolymers</subject><subject>Dimers</subject><subject>Functional groups</subject><subject>Growth kinetics</subject><subject>Initiators</subject><subject>Inorganic Chemistry</subject><subject>Iodides</subject><subject>Monomers</subject><subject>Organic Chemistry</subject><subject>para-Aminobenzoic acid</subject><subject>Phosphine</subject><subject>Phosphines</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Terpolymers</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcFN26iuXm0DbgZBl8w4EbXIUnTsUPbjEk7MP56oxUFF67uvYfvHC4HoXMgV0BYeR05CFFgQgETUgDF7ADNoBACc8bl4c_OyDE6iXFDSC4Y5DN0s8h2LkQ9NK3L2mbX9Ots69t950LznlTfZ50bXn2V1T5kOvguiTbTXVO5eIqOat1Gd_Y95-jl7vZ5-YBXT_ePy8UKWybzARcVLcqSWlNWkBsJTGjuhNG10NoAkxWriTayTBcHWVlSEwc1Ay6NMVYaNkeXU-42-LfRxUF1TbSubXXv_BgVFUwKCpwXCb34g278GPr0XaJ4XpQ8L0Wi6ETZ4GMMrlbb0HQ67BUQ9VmomgpVqVD1VahiycQmU0xwv3bhN_of1wew-Hi7</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Pal, Subhajit</creator><creator>Nguyen, Dinh Phuong Trinh</creator><creator>Molliet, Angélique</creator><creator>Alizadeh, Mahshid</creator><creator>Crochet, Aurélien</creator><creator>Ortuso, Roberto D.</creator><creator>Petri-Fink, Alke</creator><creator>Kilbinger, Andreas F. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3952-7849</orcidid><orcidid>https://orcid.org/0000-0002-6470-4600</orcidid><orcidid>https://orcid.org/0000-0002-4763-2764</orcidid><orcidid>https://orcid.org/0000-0002-2929-7499</orcidid><orcidid>https://orcid.org/0000-0002-0197-7281</orcidid><orcidid>https://orcid.org/0000-0001-6260-8642</orcidid></search><sort><creationdate>20210701</creationdate><title>A versatile living polymerization method for aromatic amides</title><author>Pal, Subhajit ; Nguyen, Dinh Phuong Trinh ; Molliet, Angélique ; Alizadeh, Mahshid ; Crochet, Aurélien ; Ortuso, Roberto D. ; Petri-Fink, Alke ; Kilbinger, Andreas F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-7d27882cb8d16b9135a4e5baf5aab139d3f0ab98aab419dc0f0e1f3149bbbc9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/455/941</topic><topic>639/638/455/959</topic><topic>Amides</topic><topic>Amines</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Aromatic compounds</topic><topic>Biochemistry</topic><topic>Block copolymers</topic><topic>Carboxylic acids</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chlorides</topic><topic>Condensation polymerization</topic><topic>Copolymers</topic><topic>Dimers</topic><topic>Functional groups</topic><topic>Growth kinetics</topic><topic>Initiators</topic><topic>Inorganic Chemistry</topic><topic>Iodides</topic><topic>Monomers</topic><topic>Organic Chemistry</topic><topic>para-Aminobenzoic acid</topic><topic>Phosphine</topic><topic>Phosphines</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Terpolymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Subhajit</creatorcontrib><creatorcontrib>Nguyen, Dinh Phuong Trinh</creatorcontrib><creatorcontrib>Molliet, Angélique</creatorcontrib><creatorcontrib>Alizadeh, Mahshid</creatorcontrib><creatorcontrib>Crochet, Aurélien</creatorcontrib><creatorcontrib>Ortuso, Roberto D.</creatorcontrib><creatorcontrib>Petri-Fink, Alke</creatorcontrib><creatorcontrib>Kilbinger, Andreas F. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Subhajit</au><au>Nguyen, Dinh Phuong Trinh</au><au>Molliet, Angélique</au><au>Alizadeh, Mahshid</au><au>Crochet, Aurélien</au><au>Ortuso, Roberto D.</au><au>Petri-Fink, Alke</au><au>Kilbinger, Andreas F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A versatile living polymerization method for aromatic amides</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>13</volume><issue>7</issue><spage>705</spage><epage>713</epage><pages>705-713</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri( o -methoxyphenyl)phosphine. The former activates aromatic carboxylic acids as acid chlorides in the presence of secondary aromatic amines and the latter even in the presence of primary aromatic amines. These reagents allow p -aminobenzoic acid derivatives to form solution-stable activated monomers that polymerize in a living fashion in the presence of amine initiators. Other aryl amino acids and even dimers of aryl amino acids can be polymerized in a living fashion when slowly added to the phosphonium salt in the presence of an amine initiator. Diblock copolymers and triblock terpolymers of aryl amino acids can be prepared even in the presence of electrophilic functional groups. Two phosphine-based reagents can be used to prepare aromatic acid chlorides in the presence of either primary or secondary amines. This approach enables the living polycondensation of aromatic amino acids under mild conditions and can be used to make block copolymers as well as helical aromatic amide foldamers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-021-00712-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3952-7849</orcidid><orcidid>https://orcid.org/0000-0002-6470-4600</orcidid><orcidid>https://orcid.org/0000-0002-4763-2764</orcidid><orcidid>https://orcid.org/0000-0002-2929-7499</orcidid><orcidid>https://orcid.org/0000-0002-0197-7281</orcidid><orcidid>https://orcid.org/0000-0001-6260-8642</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-07, Vol.13 (7), p.705-713
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2539521447
source Nature; SpringerNature Journals
subjects 639/638/455/941
639/638/455/959
Amides
Amines
Amino acids
Analytical Chemistry
Aromatic compounds
Biochemistry
Block copolymers
Carboxylic acids
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chlorides
Condensation polymerization
Copolymers
Dimers
Functional groups
Growth kinetics
Initiators
Inorganic Chemistry
Iodides
Monomers
Organic Chemistry
para-Aminobenzoic acid
Phosphine
Phosphines
Physical Chemistry
Polymers
Reagents
Terpolymers
title A versatile living polymerization method for aromatic amides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20versatile%20living%20polymerization%20method%20for%20aromatic%20amides&rft.jtitle=Nature%20chemistry&rft.au=Pal,%20Subhajit&rft.date=2021-07-01&rft.volume=13&rft.issue=7&rft.spage=705&rft.epage=713&rft.pages=705-713&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00712-3&rft_dat=%3Cproquest_cross%3E2539521447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546784685&rft_id=info:pmid/&rfr_iscdi=true