Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)
We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x = 0.00, 0.10) and (0.00 ≤ y ≤ 0.20)) at different sintering temperatures ( T s = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up t...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (7), p.486-486, Article 486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 7 |
container_start_page | 486 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Al-Naim, Abdullah F. Afify, N. Sedky, A. Ibrahim, S. S. |
description | We report here structural morphology and nonlinear behavior of pure and co-doped Zn
0.90-x
Fe
0.1
M
x
O with (M = Cu, Ni and (
x
= 0.00, 0.10) and (0.00 ≤
y
≤ 0.20)) at different sintering temperatures (
T
s
= 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient
α
and breakdown field
E
B
are generally increased by 0.1 of Fe addition, but they are shifted to lower values as
T
s
increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of
α
and
E
B
are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity
σ
L
and height of potential barrier φ
B
, whereas the vice is versa for the behavior of leakage current
J
k
and residual voltage
K
r
. Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over. |
doi_str_mv | 10.1007/s00339-021-04560-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539209970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539209970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEotPCC7CyxKYIDP7LjxcgoagFpJYugA0by3FuZlxl7MF2pp0dW16TJ8HTVEWwQFzJsqz7nat7fIriCSUvKSH1q0gI5xITRjERZUUwv1csqOAMk4qT-8WCSFHjhsvqoDiM8ZLkEow9LA64IFLKki4K_ymFyaQp6BGtfdis_OiXO6Rdj5x3o3WgA-pgpbfWB-QHtJkC3LSNx73fQI--Ooqv8e4Urs93F2irg43Jh4iubFqh4_Of33-8zqedXqCP9tmj4sGgxwiPb--j4svpyef2PT67ePehfXuGjShpwlKLuhMM9MBYJfavoQTTQ8eFFJJCJyiYbqh02QEMQw-y0ZqUBAwzRPecHxVv5rmbqVtDb8ClbFFtgl3rsFNeW_Vnx9mVWvqtamjNylLmAce3A4L_NkFMam2jgXHUDvwUFSu5ZPkXa5LRp3-hl34KLtvbU1XDiCBNpthMmeBjDDDcLUOJ2uep5jxVzlPd5Kn2Np7Poivo_BCNBWfgTpjzrMq6FjntXDTTzf_TrU06We9aP7mUpXyWxoy7JYTfHv6x3i8zvsWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536820408</pqid></control><display><type>article</type><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</creator><creatorcontrib>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</creatorcontrib><description>We report here structural morphology and nonlinear behavior of pure and co-doped Zn
0.90-x
Fe
0.1
M
x
O with (M = Cu, Ni and (
x
= 0.00, 0.10) and (0.00 ≤
y
≤ 0.20)) at different sintering temperatures (
T
s
= 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient
α
and breakdown field
E
B
are generally increased by 0.1 of Fe addition, but they are shifted to lower values as
T
s
increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of
α
and
E
B
are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity
σ
L
and height of potential barrier φ
B
, whereas the vice is versa for the behavior of leakage current
J
k
and residual voltage
K
r
. Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-04560-3</identifier><identifier>PMID: 34099951</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Copper ; Doping ; Electronic devices ; Ferromagnetism ; Grain size ; Iron ; Leakage current ; Machines ; Manufacturing ; Materials Science ; Materials Science, Multidisciplinary ; Morphology ; Nanotechnology ; Nickel ; Optical and Electronic Materials ; Optoelectronics ; Photomicrographs ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Applied ; Potential barriers ; Processes ; Science & Technology ; Surfaces and Interfaces ; Technology ; Thin Films ; Varistors ; Wurtzite ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science & processing, 2021, Vol.127 (7), p.486-486, Article 486</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000657746300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</citedby><cites>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</cites><orcidid>0000-0002-8000-2246 ; 0000-0002-9128-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-04560-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-04560-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Al-Naim, Abdullah F.</creatorcontrib><creatorcontrib>Afify, N.</creatorcontrib><creatorcontrib>Sedky, A.</creatorcontrib><creatorcontrib>Ibrahim, S. S.</creatorcontrib><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><addtitle>APPL PHYS A-MATER</addtitle><description>We report here structural morphology and nonlinear behavior of pure and co-doped Zn
0.90-x
Fe
0.1
M
x
O with (M = Cu, Ni and (
x
= 0.00, 0.10) and (0.00 ≤
y
≤ 0.20)) at different sintering temperatures (
T
s
= 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient
α
and breakdown field
E
B
are generally increased by 0.1 of Fe addition, but they are shifted to lower values as
T
s
increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of
α
and
E
B
are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity
σ
L
and height of potential barrier φ
B
, whereas the vice is versa for the behavior of leakage current
J
k
and residual voltage
K
r
. Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Ferromagnetism</subject><subject>Grain size</subject><subject>Iron</subject><subject>Leakage current</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Photomicrographs</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Applied</subject><subject>Potential barriers</subject><subject>Processes</subject><subject>Science & Technology</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><subject>Varistors</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc1u1DAUhSMEotPCC7CyxKYIDP7LjxcgoagFpJYugA0by3FuZlxl7MF2pp0dW16TJ8HTVEWwQFzJsqz7nat7fIriCSUvKSH1q0gI5xITRjERZUUwv1csqOAMk4qT-8WCSFHjhsvqoDiM8ZLkEow9LA64IFLKki4K_ymFyaQp6BGtfdis_OiXO6Rdj5x3o3WgA-pgpbfWB-QHtJkC3LSNx73fQI--Ooqv8e4Urs93F2irg43Jh4iubFqh4_Of33-8zqedXqCP9tmj4sGgxwiPb--j4svpyef2PT67ePehfXuGjShpwlKLuhMM9MBYJfavoQTTQ8eFFJJCJyiYbqh02QEMQw-y0ZqUBAwzRPecHxVv5rmbqVtDb8ClbFFtgl3rsFNeW_Vnx9mVWvqtamjNylLmAce3A4L_NkFMam2jgXHUDvwUFSu5ZPkXa5LRp3-hl34KLtvbU1XDiCBNpthMmeBjDDDcLUOJ2uep5jxVzlPd5Kn2Np7Poivo_BCNBWfgTpjzrMq6FjntXDTTzf_TrU06We9aP7mUpXyWxoy7JYTfHv6x3i8zvsWo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Al-Naim, Abdullah F.</creator><creator>Afify, N.</creator><creator>Sedky, A.</creator><creator>Ibrahim, S. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8000-2246</orcidid><orcidid>https://orcid.org/0000-0002-9128-8606</orcidid></search><sort><creationdate>2021</creationdate><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><author>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Ferromagnetism</topic><topic>Grain size</topic><topic>Iron</topic><topic>Leakage current</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Photomicrographs</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Applied</topic><topic>Potential barriers</topic><topic>Processes</topic><topic>Science & Technology</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><topic>Varistors</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Naim, Abdullah F.</creatorcontrib><creatorcontrib>Afify, N.</creatorcontrib><creatorcontrib>Sedky, A.</creatorcontrib><creatorcontrib>Ibrahim, S. S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Naim, Abdullah F.</au><au>Afify, N.</au><au>Sedky, A.</au><au>Ibrahim, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><stitle>APPL PHYS A-MATER</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>7</issue><spage>486</spage><epage>486</epage><pages>486-486</pages><artnum>486</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We report here structural morphology and nonlinear behavior of pure and co-doped Zn
0.90-x
Fe
0.1
M
x
O with (M = Cu, Ni and (
x
= 0.00, 0.10) and (0.00 ≤
y
≤ 0.20)) at different sintering temperatures (
T
s
= 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient
α
and breakdown field
E
B
are generally increased by 0.1 of Fe addition, but they are shifted to lower values as
T
s
increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of
α
and
E
B
are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity
σ
L
and height of potential barrier φ
B
, whereas the vice is versa for the behavior of leakage current
J
k
and residual voltage
K
r
. Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34099951</pmid><doi>10.1007/s00339-021-04560-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8000-2246</orcidid><orcidid>https://orcid.org/0000-0002-9128-8606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021, Vol.127 (7), p.486-486, Article 486 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_2539209970 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Applied physics Characterization and Evaluation of Materials Condensed Matter Physics Copper Doping Electronic devices Ferromagnetism Grain size Iron Leakage current Machines Manufacturing Materials Science Materials Science, Multidisciplinary Morphology Nanotechnology Nickel Optical and Electronic Materials Optoelectronics Photomicrographs Physical Sciences Physics Physics and Astronomy Physics, Applied Potential barriers Processes Science & Technology Surfaces and Interfaces Technology Thin Films Varistors Wurtzite Zinc oxide |
title | Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20morphology%20and%20nonlinear%20behavior%20of%20pure%20and%20co-doped%20Zn1-x-yFexMyO%20varistors%20with%20(M%E2%80%89=%E2%80%89Cu,%20Ni)&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Al-Naim,%20Abdullah%20F.&rft.date=2021&rft.volume=127&rft.issue=7&rft.spage=486&rft.epage=486&rft.pages=486-486&rft.artnum=486&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-04560-3&rft_dat=%3Cproquest_pubme%3E2539209970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536820408&rft_id=info:pmid/34099951&rfr_iscdi=true |