Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)

We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x  = 0.00, 0.10) and (0.00 ≤  y  ≤ 0.20)) at different sintering temperatures ( T s  = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (7), p.486-486, Article 486
Hauptverfasser: Al-Naim, Abdullah F., Afify, N., Sedky, A., Ibrahim, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 7
container_start_page 486
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Al-Naim, Abdullah F.
Afify, N.
Sedky, A.
Ibrahim, S. S.
description We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x  = 0.00, 0.10) and (0.00 ≤  y  ≤ 0.20)) at different sintering temperatures ( T s  = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient α and breakdown field E B are generally increased by 0.1 of Fe addition, but they are shifted to lower values as T s increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of α and E B are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity σ L and height of potential barrier φ B , whereas the vice is versa for the behavior of leakage current J k and residual voltage K r . Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.
doi_str_mv 10.1007/s00339-021-04560-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539209970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539209970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEotPCC7CyxKYIDP7LjxcgoagFpJYugA0by3FuZlxl7MF2pp0dW16TJ8HTVEWwQFzJsqz7nat7fIriCSUvKSH1q0gI5xITRjERZUUwv1csqOAMk4qT-8WCSFHjhsvqoDiM8ZLkEow9LA64IFLKki4K_ymFyaQp6BGtfdis_OiXO6Rdj5x3o3WgA-pgpbfWB-QHtJkC3LSNx73fQI--Ooqv8e4Urs93F2irg43Jh4iubFqh4_Of33-8zqedXqCP9tmj4sGgxwiPb--j4svpyef2PT67ePehfXuGjShpwlKLuhMM9MBYJfavoQTTQ8eFFJJCJyiYbqh02QEMQw-y0ZqUBAwzRPecHxVv5rmbqVtDb8ClbFFtgl3rsFNeW_Vnx9mVWvqtamjNylLmAce3A4L_NkFMam2jgXHUDvwUFSu5ZPkXa5LRp3-hl34KLtvbU1XDiCBNpthMmeBjDDDcLUOJ2uep5jxVzlPd5Kn2Np7Poivo_BCNBWfgTpjzrMq6FjntXDTTzf_TrU06We9aP7mUpXyWxoy7JYTfHv6x3i8zvsWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536820408</pqid></control><display><type>article</type><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</creator><creatorcontrib>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</creatorcontrib><description>We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x  = 0.00, 0.10) and (0.00 ≤  y  ≤ 0.20)) at different sintering temperatures ( T s  = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient α and breakdown field E B are generally increased by 0.1 of Fe addition, but they are shifted to lower values as T s increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of α and E B are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity σ L and height of potential barrier φ B , whereas the vice is versa for the behavior of leakage current J k and residual voltage K r . Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-04560-3</identifier><identifier>PMID: 34099951</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Copper ; Doping ; Electronic devices ; Ferromagnetism ; Grain size ; Iron ; Leakage current ; Machines ; Manufacturing ; Materials Science ; Materials Science, Multidisciplinary ; Morphology ; Nanotechnology ; Nickel ; Optical and Electronic Materials ; Optoelectronics ; Photomicrographs ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Applied ; Potential barriers ; Processes ; Science &amp; Technology ; Surfaces and Interfaces ; Technology ; Thin Films ; Varistors ; Wurtzite ; Zinc oxide</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021, Vol.127 (7), p.486-486, Article 486</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000657746300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</citedby><cites>FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</cites><orcidid>0000-0002-8000-2246 ; 0000-0002-9128-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-04560-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-04560-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Al-Naim, Abdullah F.</creatorcontrib><creatorcontrib>Afify, N.</creatorcontrib><creatorcontrib>Sedky, A.</creatorcontrib><creatorcontrib>Ibrahim, S. S.</creatorcontrib><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><addtitle>APPL PHYS A-MATER</addtitle><description>We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x  = 0.00, 0.10) and (0.00 ≤  y  ≤ 0.20)) at different sintering temperatures ( T s  = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient α and breakdown field E B are generally increased by 0.1 of Fe addition, but they are shifted to lower values as T s increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of α and E B are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity σ L and height of potential barrier φ B , whereas the vice is versa for the behavior of leakage current J k and residual voltage K r . Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Ferromagnetism</subject><subject>Grain size</subject><subject>Iron</subject><subject>Leakage current</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Photomicrographs</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Applied</subject><subject>Potential barriers</subject><subject>Processes</subject><subject>Science &amp; Technology</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><subject>Varistors</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc1u1DAUhSMEotPCC7CyxKYIDP7LjxcgoagFpJYugA0by3FuZlxl7MF2pp0dW16TJ8HTVEWwQFzJsqz7nat7fIriCSUvKSH1q0gI5xITRjERZUUwv1csqOAMk4qT-8WCSFHjhsvqoDiM8ZLkEow9LA64IFLKki4K_ymFyaQp6BGtfdis_OiXO6Rdj5x3o3WgA-pgpbfWB-QHtJkC3LSNx73fQI--Ooqv8e4Urs93F2irg43Jh4iubFqh4_Of33-8zqedXqCP9tmj4sGgxwiPb--j4svpyef2PT67ePehfXuGjShpwlKLuhMM9MBYJfavoQTTQ8eFFJJCJyiYbqh02QEMQw-y0ZqUBAwzRPecHxVv5rmbqVtDb8ClbFFtgl3rsFNeW_Vnx9mVWvqtamjNylLmAce3A4L_NkFMam2jgXHUDvwUFSu5ZPkXa5LRp3-hl34KLtvbU1XDiCBNpthMmeBjDDDcLUOJ2uep5jxVzlPd5Kn2Np7Poivo_BCNBWfgTpjzrMq6FjntXDTTzf_TrU06We9aP7mUpXyWxoy7JYTfHv6x3i8zvsWo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Al-Naim, Abdullah F.</creator><creator>Afify, N.</creator><creator>Sedky, A.</creator><creator>Ibrahim, S. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8000-2246</orcidid><orcidid>https://orcid.org/0000-0002-9128-8606</orcidid></search><sort><creationdate>2021</creationdate><title>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</title><author>Al-Naim, Abdullah F. ; Afify, N. ; Sedky, A. ; Ibrahim, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9a47b42eaf22649a47f5ecdeb349491eb41ecbf6a5beeffde98aa050ec2c0ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Ferromagnetism</topic><topic>Grain size</topic><topic>Iron</topic><topic>Leakage current</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Photomicrographs</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Applied</topic><topic>Potential barriers</topic><topic>Processes</topic><topic>Science &amp; Technology</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><topic>Varistors</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Naim, Abdullah F.</creatorcontrib><creatorcontrib>Afify, N.</creatorcontrib><creatorcontrib>Sedky, A.</creatorcontrib><creatorcontrib>Ibrahim, S. S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Naim, Abdullah F.</au><au>Afify, N.</au><au>Sedky, A.</au><au>Ibrahim, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><stitle>APPL PHYS A-MATER</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>7</issue><spage>486</spage><epage>486</epage><pages>486-486</pages><artnum>486</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We report here structural morphology and nonlinear behavior of pure and co-doped Zn 0.90-x Fe 0.1 M x O with (M = Cu, Ni and ( x  = 0.00, 0.10) and (0.00 ≤  y  ≤ 0.20)) at different sintering temperatures ( T s  = 850 and 1000 °C). It is found that the co-doping of ZnO by (Fe + Cu) or (Fe + Ni) up to 0.30 does not deform the well-known wurtzite structure of ZnO, as well as pure and 0.1 of Fe-doped ZnO. The SEM micrographs did not show any secondary phases at the boundaries of grains as compared to ZnO, the average grain size is decreased for Fe and (Fe + Cu) samples, while it is increased for (Fe + Ni) samples. The nonlinear coefficient α and breakdown field E B are generally increased by 0.1 of Fe addition, but they are shifted to lower values as T s increases for all samples. Furthermore, they are gradually increased/decreased to higher/lower values for (Fe + Cu/Fe + Ni) samples up to 0.30 of co-doping content. The values of α and E B are increased from 30.06, 2115.38 V/cm for ZnO at 850 °C to 50.07, 5012 V/cm by (0.1Fe + 0.2Cu) co-doping, and from 23.53, 1956.52 V/cm to 45.58, 4750 V/cm at 1000 °C, while they are, respectively, decreased by (0.1Fe + 0.2Ni) to 13.19, 312 V/cm and 11.85, 172.42 V/cm. Similar behavior was generally obtained for nonlinear conductivity σ L and height of potential barrier φ B , whereas the vice is versa for the behavior of leakage current J k and residual voltage K r . Our results are discussed in terms of the comparative participation between the effects of co-doping of (Fe + Cu) and (Fe + Ni) to ZnO for supporting the potential barrier as compared to individual doping by Fe, Cu and Ni. This study perhaps recommended these samples for optoelectronic and ferromagnetic investigation after COVID-19 is over.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34099951</pmid><doi>10.1007/s00339-021-04560-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8000-2246</orcidid><orcidid>https://orcid.org/0000-0002-9128-8606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021, Vol.127 (7), p.486-486, Article 486
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_2539209970
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Copper
Doping
Electronic devices
Ferromagnetism
Grain size
Iron
Leakage current
Machines
Manufacturing
Materials Science
Materials Science, Multidisciplinary
Morphology
Nanotechnology
Nickel
Optical and Electronic Materials
Optoelectronics
Photomicrographs
Physical Sciences
Physics
Physics and Astronomy
Physics, Applied
Potential barriers
Processes
Science & Technology
Surfaces and Interfaces
Technology
Thin Films
Varistors
Wurtzite
Zinc oxide
title Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20morphology%20and%20nonlinear%20behavior%20of%20pure%20and%20co-doped%20Zn1-x-yFexMyO%20varistors%20with%20(M%E2%80%89=%E2%80%89Cu,%20Ni)&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Al-Naim,%20Abdullah%20F.&rft.date=2021&rft.volume=127&rft.issue=7&rft.spage=486&rft.epage=486&rft.pages=486-486&rft.artnum=486&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-04560-3&rft_dat=%3Cproquest_pubme%3E2539209970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536820408&rft_id=info:pmid/34099951&rfr_iscdi=true