Corticomuscular coupling analysis based on improved LSTM and transfer entropy

•A new method based on TE and LSTM is firstly proposed.•A coupling analysis method based on coupling area is proposed.•Analyze the characteristics of different human gestures from the coupling strength.•Our method plays a major role in exploring the mechanism of human movement. The study of function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience letters 2021-08, Vol.760, p.136012-136012, Article 136012
Hauptverfasser: Ye, Fei, Sun, Ziyang, Yang, Donghui, Wang, Huijiao, Xi, Xugang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136012
container_issue
container_start_page 136012
container_title Neuroscience letters
container_volume 760
creator Ye, Fei
Sun, Ziyang
Yang, Donghui
Wang, Huijiao
Xi, Xugang
description •A new method based on TE and LSTM is firstly proposed.•A coupling analysis method based on coupling area is proposed.•Analyze the characteristics of different human gestures from the coupling strength.•Our method plays a major role in exploring the mechanism of human movement. The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.
doi_str_mv 10.1016/j.neulet.2021.136012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2539207539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304394021003906</els_id><sourcerecordid>2539207539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c4a1f62d497b48362792575f76bc54985a881ece4fcb00aa980a59e2c0eec4473</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwDxDqkUuHk6ZNe0FCE1_SJg6Mc5SmLsrUNiVpkfbvydTBkYtt2a-_HkKuKSwp0Oxut-xwbHBYMmB0SZMMKDshc5oLFotCsFMyhwR4nBQcZuTC-x0ApDTl52SWcChyYMmcbFbWDUbbdvR6bJSLtB37xnSfkepUs_fGR6XyWEW2i0zbO_sd4vX7dhPqVTQ41fkaXYTd4Gy_vyRntWo8Xh39gnw8PW5XL_H67fl19bCOdZKxIdZc0TpjFS9EyfOQEgVLRVqLrNQpL_JU5TlFjbzWJYBS4VaVFsg0IGrORbIgt9PccNDXiH6QrfEam0Z1aEcvWZoUDESwQconqXbWe4e17J1pldtLCvIAUu7kBFIeQMoJZGi7OW4Yyxarv6ZfckFwPwkw_Plt0EmvDXYaK-NQD7Ky5v8NP-E2hig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539207539</pqid></control><display><type>article</type><title>Corticomuscular coupling analysis based on improved LSTM and transfer entropy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ye, Fei ; Sun, Ziyang ; Yang, Donghui ; Wang, Huijiao ; Xi, Xugang</creator><creatorcontrib>Ye, Fei ; Sun, Ziyang ; Yang, Donghui ; Wang, Huijiao ; Xi, Xugang</creatorcontrib><description>•A new method based on TE and LSTM is firstly proposed.•A coupling analysis method based on coupling area is proposed.•Analyze the characteristics of different human gestures from the coupling strength.•Our method plays a major role in exploring the mechanism of human movement. The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.</description><identifier>ISSN: 0304-3940</identifier><identifier>EISSN: 1872-7972</identifier><identifier>DOI: 10.1016/j.neulet.2021.136012</identifier><identifier>PMID: 34098023</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Canonical Correlation Analysis ; Corticomuscular coupling ; Electroencephalogram ; Electroencephalography ; Electromyography ; Entropy ; Female ; Healthy Volunteers ; Humans ; Male ; Memory, Long-Term - physiology ; Memory, Short-Term - physiology ; Models, Neurological ; Motor Cortex - physiology ; Movement - physiology ; Movement Disorders - physiopathology ; Movement Disorders - rehabilitation ; Muscle, Skeletal - physiology ; Transfer entropy</subject><ispartof>Neuroscience letters, 2021-08, Vol.760, p.136012-136012, Article 136012</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c4a1f62d497b48362792575f76bc54985a881ece4fcb00aa980a59e2c0eec4473</citedby><cites>FETCH-LOGICAL-c362t-c4a1f62d497b48362792575f76bc54985a881ece4fcb00aa980a59e2c0eec4473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304394021003906$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34098023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Sun, Ziyang</creatorcontrib><creatorcontrib>Yang, Donghui</creatorcontrib><creatorcontrib>Wang, Huijiao</creatorcontrib><creatorcontrib>Xi, Xugang</creatorcontrib><title>Corticomuscular coupling analysis based on improved LSTM and transfer entropy</title><title>Neuroscience letters</title><addtitle>Neurosci Lett</addtitle><description>•A new method based on TE and LSTM is firstly proposed.•A coupling analysis method based on coupling area is proposed.•Analyze the characteristics of different human gestures from the coupling strength.•Our method plays a major role in exploring the mechanism of human movement. The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.</description><subject>Canonical Correlation Analysis</subject><subject>Corticomuscular coupling</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Entropy</subject><subject>Female</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Male</subject><subject>Memory, Long-Term - physiology</subject><subject>Memory, Short-Term - physiology</subject><subject>Models, Neurological</subject><subject>Motor Cortex - physiology</subject><subject>Movement - physiology</subject><subject>Movement Disorders - physiopathology</subject><subject>Movement Disorders - rehabilitation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Transfer entropy</subject><issn>0304-3940</issn><issn>1872-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEYmPwDxDqkUuHk6ZNe0FCE1_SJg6Mc5SmLsrUNiVpkfbvydTBkYtt2a-_HkKuKSwp0Oxut-xwbHBYMmB0SZMMKDshc5oLFotCsFMyhwR4nBQcZuTC-x0ApDTl52SWcChyYMmcbFbWDUbbdvR6bJSLtB37xnSfkepUs_fGR6XyWEW2i0zbO_sd4vX7dhPqVTQ41fkaXYTd4Gy_vyRntWo8Xh39gnw8PW5XL_H67fl19bCOdZKxIdZc0TpjFS9EyfOQEgVLRVqLrNQpL_JU5TlFjbzWJYBS4VaVFsg0IGrORbIgt9PccNDXiH6QrfEam0Z1aEcvWZoUDESwQconqXbWe4e17J1pldtLCvIAUu7kBFIeQMoJZGi7OW4Yyxarv6ZfckFwPwkw_Plt0EmvDXYaK-NQD7Ky5v8NP-E2hig</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Ye, Fei</creator><creator>Sun, Ziyang</creator><creator>Yang, Donghui</creator><creator>Wang, Huijiao</creator><creator>Xi, Xugang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210824</creationdate><title>Corticomuscular coupling analysis based on improved LSTM and transfer entropy</title><author>Ye, Fei ; Sun, Ziyang ; Yang, Donghui ; Wang, Huijiao ; Xi, Xugang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c4a1f62d497b48362792575f76bc54985a881ece4fcb00aa980a59e2c0eec4473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canonical Correlation Analysis</topic><topic>Corticomuscular coupling</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Entropy</topic><topic>Female</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Male</topic><topic>Memory, Long-Term - physiology</topic><topic>Memory, Short-Term - physiology</topic><topic>Models, Neurological</topic><topic>Motor Cortex - physiology</topic><topic>Movement - physiology</topic><topic>Movement Disorders - physiopathology</topic><topic>Movement Disorders - rehabilitation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Transfer entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Fei</creatorcontrib><creatorcontrib>Sun, Ziyang</creatorcontrib><creatorcontrib>Yang, Donghui</creatorcontrib><creatorcontrib>Wang, Huijiao</creatorcontrib><creatorcontrib>Xi, Xugang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Fei</au><au>Sun, Ziyang</au><au>Yang, Donghui</au><au>Wang, Huijiao</au><au>Xi, Xugang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corticomuscular coupling analysis based on improved LSTM and transfer entropy</atitle><jtitle>Neuroscience letters</jtitle><addtitle>Neurosci Lett</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>760</volume><spage>136012</spage><epage>136012</epage><pages>136012-136012</pages><artnum>136012</artnum><issn>0304-3940</issn><eissn>1872-7972</eissn><abstract>•A new method based on TE and LSTM is firstly proposed.•A coupling analysis method based on coupling area is proposed.•Analyze the characteristics of different human gestures from the coupling strength.•Our method plays a major role in exploring the mechanism of human movement. The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34098023</pmid><doi>10.1016/j.neulet.2021.136012</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3940
ispartof Neuroscience letters, 2021-08, Vol.760, p.136012-136012, Article 136012
issn 0304-3940
1872-7972
language eng
recordid cdi_proquest_miscellaneous_2539207539
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Canonical Correlation Analysis
Corticomuscular coupling
Electroencephalogram
Electroencephalography
Electromyography
Entropy
Female
Healthy Volunteers
Humans
Male
Memory, Long-Term - physiology
Memory, Short-Term - physiology
Models, Neurological
Motor Cortex - physiology
Movement - physiology
Movement Disorders - physiopathology
Movement Disorders - rehabilitation
Muscle, Skeletal - physiology
Transfer entropy
title Corticomuscular coupling analysis based on improved LSTM and transfer entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corticomuscular%20coupling%20analysis%20based%20on%20improved%20LSTM%20and%20transfer%20entropy&rft.jtitle=Neuroscience%20letters&rft.au=Ye,%20Fei&rft.date=2021-08-24&rft.volume=760&rft.spage=136012&rft.epage=136012&rft.pages=136012-136012&rft.artnum=136012&rft.issn=0304-3940&rft.eissn=1872-7972&rft_id=info:doi/10.1016/j.neulet.2021.136012&rft_dat=%3Cproquest_cross%3E2539207539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539207539&rft_id=info:pmid/34098023&rft_els_id=S0304394021003906&rfr_iscdi=true