Projectively invariant representations using implicit algebraic curves

We demonstrate that it is possible to compute polynomial representations of image curves which are unaffected by the projective frame in which the representation is computed. This means that: ‘The curve chosen to represent a projected set of points is the projection of the curve chosen to represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 1991, Vol.9 (2), p.130-136
Hauptverfasser: Forsyth, David, Mundy, Joseph L, Zisserman, Andrew, Brown, Christopher M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2
container_start_page 130
container_title Image and vision computing
container_volume 9
creator Forsyth, David
Mundy, Joseph L
Zisserman, Andrew
Brown, Christopher M
description We demonstrate that it is possible to compute polynomial representations of image curves which are unaffected by the projective frame in which the representation is computed. This means that: ‘The curve chosen to represent a projected set of points is the projection of the curve chosen to represent the original set.’ We achieve this by using algebraic invariants of the polynomial in the fitting process. We demonstrate that the procedure works for plane conic curves. For higher order plane curves, or for aggregates of plane conies, algebraic invariants can yield powerful representations of shape that are unaffected by projection, and hence make good cues for model-based vision. Tests on synthetic and real data have yielded excellent results.
doi_str_mv 10.1016/0262-8856(91)90023-I
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25382456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>026288569190023I</els_id><sourcerecordid>25382456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2c222d2d7a93c12e8f958e4f19ec23dd31b300bea860911e514fd2001e7d41473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmq_NJhdBitVCQQ96DmkyW1K22TXZXei_d2ulR08Dw_O-wzwIXRP8QDARj5gKmktZiDtF7hXGlOWLEzQhshzXhMlTNDki5-gipQ3GuMSlmqD5R2w2YDs_QL3LfBhM9CZ0WYQ2QoLQmc43IWV98mGd-W1be-u7zNRrWEXjbWb7OEC6RGeVqRNc_c0p-pq_fM7e8uX762L2vMwtE7zLqaWUOupKo5glFGSlCgm8IgosZc4xsmIYr8BIgRUhUBBeOYoxgdJxwks2RbeH3jY23z2kTm99slDXJkDTJ00LJikvxAjyA2hjk1KESrfRb03caYL1XpreG9F7I1oR_StNL8bYzV-_SdbUVTTB-nTMciWkKPCIPR0wGH8dPESdrIdgwfk4ytSu8f_f-QH0vYD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25382456</pqid></control><display><type>article</type><title>Projectively invariant representations using implicit algebraic curves</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Forsyth, David ; Mundy, Joseph L ; Zisserman, Andrew ; Brown, Christopher M</creator><creatorcontrib>Forsyth, David ; Mundy, Joseph L ; Zisserman, Andrew ; Brown, Christopher M</creatorcontrib><description>We demonstrate that it is possible to compute polynomial representations of image curves which are unaffected by the projective frame in which the representation is computed. This means that: ‘The curve chosen to represent a projected set of points is the projection of the curve chosen to represent the original set.’ We achieve this by using algebraic invariants of the polynomial in the fitting process. We demonstrate that the procedure works for plane conic curves. For higher order plane curves, or for aggregates of plane conies, algebraic invariants can yield powerful representations of shape that are unaffected by projection, and hence make good cues for model-based vision. Tests on synthetic and real data have yielded excellent results.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/0262-8856(91)90023-I</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Computer aided design ; Computer science; control theory; systems ; curves ; Exact sciences and technology ; model matching ; polynomial representation ; projection ; Software</subject><ispartof>Image and vision computing, 1991, Vol.9 (2), p.130-136</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2c222d2d7a93c12e8f958e4f19ec23dd31b300bea860911e514fd2001e7d41473</citedby><cites>FETCH-LOGICAL-c364t-2c222d2d7a93c12e8f958e4f19ec23dd31b300bea860911e514fd2001e7d41473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0262-8856(91)90023-I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4968650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Forsyth, David</creatorcontrib><creatorcontrib>Mundy, Joseph L</creatorcontrib><creatorcontrib>Zisserman, Andrew</creatorcontrib><creatorcontrib>Brown, Christopher M</creatorcontrib><title>Projectively invariant representations using implicit algebraic curves</title><title>Image and vision computing</title><description>We demonstrate that it is possible to compute polynomial representations of image curves which are unaffected by the projective frame in which the representation is computed. This means that: ‘The curve chosen to represent a projected set of points is the projection of the curve chosen to represent the original set.’ We achieve this by using algebraic invariants of the polynomial in the fitting process. We demonstrate that the procedure works for plane conic curves. For higher order plane curves, or for aggregates of plane conies, algebraic invariants can yield powerful representations of shape that are unaffected by projection, and hence make good cues for model-based vision. Tests on synthetic and real data have yielded excellent results.</description><subject>Applied sciences</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>curves</subject><subject>Exact sciences and technology</subject><subject>model matching</subject><subject>polynomial representation</subject><subject>projection</subject><subject>Software</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMeRPSwmq_NJhdBitVCQQ96DmkyW1K22TXZXei_d2ulR08Dw_O-wzwIXRP8QDARj5gKmktZiDtF7hXGlOWLEzQhshzXhMlTNDki5-gipQ3GuMSlmqD5R2w2YDs_QL3LfBhM9CZ0WYQ2QoLQmc43IWV98mGd-W1be-u7zNRrWEXjbWb7OEC6RGeVqRNc_c0p-pq_fM7e8uX762L2vMwtE7zLqaWUOupKo5glFGSlCgm8IgosZc4xsmIYr8BIgRUhUBBeOYoxgdJxwks2RbeH3jY23z2kTm99slDXJkDTJ00LJikvxAjyA2hjk1KESrfRb03caYL1XpreG9F7I1oR_StNL8bYzV-_SdbUVTTB-nTMciWkKPCIPR0wGH8dPESdrIdgwfk4ytSu8f_f-QH0vYD4</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Forsyth, David</creator><creator>Mundy, Joseph L</creator><creator>Zisserman, Andrew</creator><creator>Brown, Christopher M</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1991</creationdate><title>Projectively invariant representations using implicit algebraic curves</title><author>Forsyth, David ; Mundy, Joseph L ; Zisserman, Andrew ; Brown, Christopher M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2c222d2d7a93c12e8f958e4f19ec23dd31b300bea860911e514fd2001e7d41473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>curves</topic><topic>Exact sciences and technology</topic><topic>model matching</topic><topic>polynomial representation</topic><topic>projection</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forsyth, David</creatorcontrib><creatorcontrib>Mundy, Joseph L</creatorcontrib><creatorcontrib>Zisserman, Andrew</creatorcontrib><creatorcontrib>Brown, Christopher M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forsyth, David</au><au>Mundy, Joseph L</au><au>Zisserman, Andrew</au><au>Brown, Christopher M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projectively invariant representations using implicit algebraic curves</atitle><jtitle>Image and vision computing</jtitle><date>1991</date><risdate>1991</risdate><volume>9</volume><issue>2</issue><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>We demonstrate that it is possible to compute polynomial representations of image curves which are unaffected by the projective frame in which the representation is computed. This means that: ‘The curve chosen to represent a projected set of points is the projection of the curve chosen to represent the original set.’ We achieve this by using algebraic invariants of the polynomial in the fitting process. We demonstrate that the procedure works for plane conic curves. For higher order plane curves, or for aggregates of plane conies, algebraic invariants can yield powerful representations of shape that are unaffected by projection, and hence make good cues for model-based vision. Tests on synthetic and real data have yielded excellent results.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/0262-8856(91)90023-I</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 1991, Vol.9 (2), p.130-136
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_25382456
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Computer aided design
Computer science
control theory
systems
curves
Exact sciences and technology
model matching
polynomial representation
projection
Software
title Projectively invariant representations using implicit algebraic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projectively%20invariant%20representations%20using%20implicit%20algebraic%20curves&rft.jtitle=Image%20and%20vision%20computing&rft.au=Forsyth,%20David&rft.date=1991&rft.volume=9&rft.issue=2&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/0262-8856(91)90023-I&rft_dat=%3Cproquest_cross%3E25382456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25382456&rft_id=info:pmid/&rft_els_id=026288569190023I&rfr_iscdi=true