Ligand-centred redox activation of inert organoiridium anticancer catalysts

Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-06, Vol.11 (21), p.5466-548
Hauptverfasser: Zhang, Wen-Ying, Banerjee, Samya, Hughes, George M, Bridgewater, Hannah E, Song, Ji-Inn, Breeze, Ben G, Clarkson, Guy J, Coverdale, James P. C, Sanchez-Cano, Carlos, Ponte, Fortuna, Sicilia, Emilia, Sadler, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 21
container_start_page 5466
container_title Chemical science (Cambridge)
container_volume 11
creator Zhang, Wen-Ying
Banerjee, Samya
Hughes, George M
Bridgewater, Hannah E
Song, Ji-Inn
Breeze, Ben G
Clarkson, Guy J
Coverdale, James P. C
Sanchez-Cano, Carlos
Ponte, Fortuna
Sicilia, Emilia
Sadler, Peter J
description Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS − attack on the azo bond facilitates the substitution of iodide by GS − , and leads to formation of GSSG and superoxide if O 2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs. Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.
doi_str_mv 10.1039/d0sc00897d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2538048991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408838632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agii21F-_CiBcRpn3JS2aSi1C2_ihd8KCeQ5pJaspssiaZYv97025Z0YOBkBfy4csLj5CXFE4ooDqdoFgAqcbpCTlkwGk_CFRP9zWDA3Jcyg20hUgFG5-TA-SgOIx4SC7X4drEqbcu1uymru30qzO2hltTQ4pd8l2ILtcu5QZTyGEKy6YzsQZronW5s6aa-a7U8oI882Yu7vjxPCLfP374tvrcr798ulidrXvLR1Z7ZMyOfPDyynjD5ci8pQNwL6aBU-4pF4IpT0H5dlEDdYJboMIxREMVIh6R97vc7XK1cdND62bW2xw2Jt_pZIL--yWGH_o63WpJhcLhPuDtY0BOPxdXqt6EYt08m-jSUjQTKIFLpWijb_6hN2nJsX1PMw5SohyQNfVup2xOpWTn981Q0Pdj0ufwdfUwpvOGX-9wLnbv_oxRbyffzKv_GfwNXG2YaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408838632</pqid></control><display><type>article</type><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</creator><creatorcontrib>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</creatorcontrib><description>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS − attack on the azo bond facilitates the substitution of iodide by GS − , and leads to formation of GSSG and superoxide if O 2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs. Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc00897d</identifier><identifier>PMID: 34094073</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Cancer ; Catalysts ; Chemical compounds ; Chemistry ; Crystallography ; Drugs ; Glutathione ; Hydroxyl radicals ; Iridium compounds ; Ligands ; Oxidation ; Redox reactions</subject><ispartof>Chemical science (Cambridge), 2020-06, Vol.11 (21), p.5466-548</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</citedby><cites>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</cites><orcidid>0000-0003-1769-9025 ; 0000-0002-7979-9753 ; 0000-0002-4431-9510 ; 0000-0002-0180-6423 ; 0000-0003-3076-3191 ; 0000-0001-7850-045X ; 0000-0002-9522-0019 ; 0000-0002-0880-4447 ; 0000-0002-7779-6620 ; 0000-0001-9160-1941 ; 0000-0003-4393-4447 ; 0000-0001-5952-9927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Wen-Ying</creatorcontrib><creatorcontrib>Banerjee, Samya</creatorcontrib><creatorcontrib>Hughes, George M</creatorcontrib><creatorcontrib>Bridgewater, Hannah E</creatorcontrib><creatorcontrib>Song, Ji-Inn</creatorcontrib><creatorcontrib>Breeze, Ben G</creatorcontrib><creatorcontrib>Clarkson, Guy J</creatorcontrib><creatorcontrib>Coverdale, James P. C</creatorcontrib><creatorcontrib>Sanchez-Cano, Carlos</creatorcontrib><creatorcontrib>Ponte, Fortuna</creatorcontrib><creatorcontrib>Sicilia, Emilia</creatorcontrib><creatorcontrib>Sadler, Peter J</creatorcontrib><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><title>Chemical science (Cambridge)</title><description>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS − attack on the azo bond facilitates the substitution of iodide by GS − , and leads to formation of GSSG and superoxide if O 2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs. Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</description><subject>Activation</subject><subject>Cancer</subject><subject>Catalysts</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Crystallography</subject><subject>Drugs</subject><subject>Glutathione</subject><subject>Hydroxyl radicals</subject><subject>Iridium compounds</subject><subject>Ligands</subject><subject>Oxidation</subject><subject>Redox reactions</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_Agii21F-_CiBcRpn3JS2aSi1C2_ihd8KCeQ5pJaspssiaZYv97025Z0YOBkBfy4csLj5CXFE4ooDqdoFgAqcbpCTlkwGk_CFRP9zWDA3Jcyg20hUgFG5-TA-SgOIx4SC7X4drEqbcu1uymru30qzO2hltTQ4pd8l2ILtcu5QZTyGEKy6YzsQZronW5s6aa-a7U8oI882Yu7vjxPCLfP374tvrcr798ulidrXvLR1Z7ZMyOfPDyynjD5ci8pQNwL6aBU-4pF4IpT0H5dlEDdYJboMIxREMVIh6R97vc7XK1cdND62bW2xw2Jt_pZIL--yWGH_o63WpJhcLhPuDtY0BOPxdXqt6EYt08m-jSUjQTKIFLpWijb_6hN2nJsX1PMw5SohyQNfVup2xOpWTn981Q0Pdj0ufwdfUwpvOGX-9wLnbv_oxRbyffzKv_GfwNXG2YaQ</recordid><startdate>20200607</startdate><enddate>20200607</enddate><creator>Zhang, Wen-Ying</creator><creator>Banerjee, Samya</creator><creator>Hughes, George M</creator><creator>Bridgewater, Hannah E</creator><creator>Song, Ji-Inn</creator><creator>Breeze, Ben G</creator><creator>Clarkson, Guy J</creator><creator>Coverdale, James P. C</creator><creator>Sanchez-Cano, Carlos</creator><creator>Ponte, Fortuna</creator><creator>Sicilia, Emilia</creator><creator>Sadler, Peter J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1769-9025</orcidid><orcidid>https://orcid.org/0000-0002-7979-9753</orcidid><orcidid>https://orcid.org/0000-0002-4431-9510</orcidid><orcidid>https://orcid.org/0000-0002-0180-6423</orcidid><orcidid>https://orcid.org/0000-0003-3076-3191</orcidid><orcidid>https://orcid.org/0000-0001-7850-045X</orcidid><orcidid>https://orcid.org/0000-0002-9522-0019</orcidid><orcidid>https://orcid.org/0000-0002-0880-4447</orcidid><orcidid>https://orcid.org/0000-0002-7779-6620</orcidid><orcidid>https://orcid.org/0000-0001-9160-1941</orcidid><orcidid>https://orcid.org/0000-0003-4393-4447</orcidid><orcidid>https://orcid.org/0000-0001-5952-9927</orcidid></search><sort><creationdate>20200607</creationdate><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><author>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Cancer</topic><topic>Catalysts</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Crystallography</topic><topic>Drugs</topic><topic>Glutathione</topic><topic>Hydroxyl radicals</topic><topic>Iridium compounds</topic><topic>Ligands</topic><topic>Oxidation</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen-Ying</creatorcontrib><creatorcontrib>Banerjee, Samya</creatorcontrib><creatorcontrib>Hughes, George M</creatorcontrib><creatorcontrib>Bridgewater, Hannah E</creatorcontrib><creatorcontrib>Song, Ji-Inn</creatorcontrib><creatorcontrib>Breeze, Ben G</creatorcontrib><creatorcontrib>Clarkson, Guy J</creatorcontrib><creatorcontrib>Coverdale, James P. C</creatorcontrib><creatorcontrib>Sanchez-Cano, Carlos</creatorcontrib><creatorcontrib>Ponte, Fortuna</creatorcontrib><creatorcontrib>Sicilia, Emilia</creatorcontrib><creatorcontrib>Sadler, Peter J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wen-Ying</au><au>Banerjee, Samya</au><au>Hughes, George M</au><au>Bridgewater, Hannah E</au><au>Song, Ji-Inn</au><au>Breeze, Ben G</au><au>Clarkson, Guy J</au><au>Coverdale, James P. C</au><au>Sanchez-Cano, Carlos</au><au>Ponte, Fortuna</au><au>Sicilia, Emilia</au><au>Sadler, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-centred redox activation of inert organoiridium anticancer catalysts</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-06-07</date><risdate>2020</risdate><volume>11</volume><issue>21</issue><spage>5466</spage><epage>548</epage><pages>5466-548</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS − attack on the azo bond facilitates the substitution of iodide by GS − , and leads to formation of GSSG and superoxide if O 2 is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate Ir-SG complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs. Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34094073</pmid><doi>10.1039/d0sc00897d</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1769-9025</orcidid><orcidid>https://orcid.org/0000-0002-7979-9753</orcidid><orcidid>https://orcid.org/0000-0002-4431-9510</orcidid><orcidid>https://orcid.org/0000-0002-0180-6423</orcidid><orcidid>https://orcid.org/0000-0003-3076-3191</orcidid><orcidid>https://orcid.org/0000-0001-7850-045X</orcidid><orcidid>https://orcid.org/0000-0002-9522-0019</orcidid><orcidid>https://orcid.org/0000-0002-0880-4447</orcidid><orcidid>https://orcid.org/0000-0002-7779-6620</orcidid><orcidid>https://orcid.org/0000-0001-9160-1941</orcidid><orcidid>https://orcid.org/0000-0003-4393-4447</orcidid><orcidid>https://orcid.org/0000-0001-5952-9927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-06, Vol.11 (21), p.5466-548
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_2538048991
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Activation
Cancer
Catalysts
Chemical compounds
Chemistry
Crystallography
Drugs
Glutathione
Hydroxyl radicals
Iridium compounds
Ligands
Oxidation
Redox reactions
title Ligand-centred redox activation of inert organoiridium anticancer catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-centred%20redox%20activation%20of%20inert%20organoiridium%20anticancer%20catalysts&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Zhang,%20Wen-Ying&rft.date=2020-06-07&rft.volume=11&rft.issue=21&rft.spage=5466&rft.epage=548&rft.pages=5466-548&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc00897d&rft_dat=%3Cproquest_pubme%3E2408838632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408838632&rft_id=info:pmid/34094073&rfr_iscdi=true