Ligand-centred redox activation of inert organoiridium anticancer catalysts
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium( iii ) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin....
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2020-06, Vol.11 (21), p.5466-548 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 21 |
container_start_page | 5466 |
container_title | Chemical science (Cambridge) |
container_volume | 11 |
creator | Zhang, Wen-Ying Banerjee, Samya Hughes, George M Bridgewater, Hannah E Song, Ji-Inn Breeze, Ben G Clarkson, Guy J Coverdale, James P. C Sanchez-Cano, Carlos Ponte, Fortuna Sicilia, Emilia Sadler, Peter J |
description | Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(
iii
) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS
−
attack on the azo bond facilitates the substitution of iodide by GS
−
, and leads to formation of GSSG and superoxide if O
2
is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate
Ir-SG
complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. |
doi_str_mv | 10.1039/d0sc00897d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2538048991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408838632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agii21F-_CiBcRpn3JS2aSi1C2_ihd8KCeQ5pJaspssiaZYv97025Z0YOBkBfy4csLj5CXFE4ooDqdoFgAqcbpCTlkwGk_CFRP9zWDA3Jcyg20hUgFG5-TA-SgOIx4SC7X4drEqbcu1uymru30qzO2hltTQ4pd8l2ILtcu5QZTyGEKy6YzsQZronW5s6aa-a7U8oI882Yu7vjxPCLfP374tvrcr798ulidrXvLR1Z7ZMyOfPDyynjD5ci8pQNwL6aBU-4pF4IpT0H5dlEDdYJboMIxREMVIh6R97vc7XK1cdND62bW2xw2Jt_pZIL--yWGH_o63WpJhcLhPuDtY0BOPxdXqt6EYt08m-jSUjQTKIFLpWijb_6hN2nJsX1PMw5SohyQNfVup2xOpWTn981Q0Pdj0ufwdfUwpvOGX-9wLnbv_oxRbyffzKv_GfwNXG2YaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408838632</pqid></control><display><type>article</type><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</creator><creatorcontrib>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</creatorcontrib><description>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(
iii
) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS
−
attack on the azo bond facilitates the substitution of iodide by GS
−
, and leads to formation of GSSG and superoxide if O
2
is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate
Ir-SG
complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc00897d</identifier><identifier>PMID: 34094073</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Cancer ; Catalysts ; Chemical compounds ; Chemistry ; Crystallography ; Drugs ; Glutathione ; Hydroxyl radicals ; Iridium compounds ; Ligands ; Oxidation ; Redox reactions</subject><ispartof>Chemical science (Cambridge), 2020-06, Vol.11 (21), p.5466-548</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</citedby><cites>FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</cites><orcidid>0000-0003-1769-9025 ; 0000-0002-7979-9753 ; 0000-0002-4431-9510 ; 0000-0002-0180-6423 ; 0000-0003-3076-3191 ; 0000-0001-7850-045X ; 0000-0002-9522-0019 ; 0000-0002-0880-4447 ; 0000-0002-7779-6620 ; 0000-0001-9160-1941 ; 0000-0003-4393-4447 ; 0000-0001-5952-9927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Wen-Ying</creatorcontrib><creatorcontrib>Banerjee, Samya</creatorcontrib><creatorcontrib>Hughes, George M</creatorcontrib><creatorcontrib>Bridgewater, Hannah E</creatorcontrib><creatorcontrib>Song, Ji-Inn</creatorcontrib><creatorcontrib>Breeze, Ben G</creatorcontrib><creatorcontrib>Clarkson, Guy J</creatorcontrib><creatorcontrib>Coverdale, James P. C</creatorcontrib><creatorcontrib>Sanchez-Cano, Carlos</creatorcontrib><creatorcontrib>Ponte, Fortuna</creatorcontrib><creatorcontrib>Sicilia, Emilia</creatorcontrib><creatorcontrib>Sadler, Peter J</creatorcontrib><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><title>Chemical science (Cambridge)</title><description>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(
iii
) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS
−
attack on the azo bond facilitates the substitution of iodide by GS
−
, and leads to formation of GSSG and superoxide if O
2
is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate
Ir-SG
complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</description><subject>Activation</subject><subject>Cancer</subject><subject>Catalysts</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Crystallography</subject><subject>Drugs</subject><subject>Glutathione</subject><subject>Hydroxyl radicals</subject><subject>Iridium compounds</subject><subject>Ligands</subject><subject>Oxidation</subject><subject>Redox reactions</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9rFDEUB_Agii21F-_CiBcRpn3JS2aSi1C2_ihd8KCeQ5pJaspssiaZYv97025Z0YOBkBfy4csLj5CXFE4ooDqdoFgAqcbpCTlkwGk_CFRP9zWDA3Jcyg20hUgFG5-TA-SgOIx4SC7X4drEqbcu1uymru30qzO2hltTQ4pd8l2ILtcu5QZTyGEKy6YzsQZronW5s6aa-a7U8oI882Yu7vjxPCLfP374tvrcr798ulidrXvLR1Z7ZMyOfPDyynjD5ci8pQNwL6aBU-4pF4IpT0H5dlEDdYJboMIxREMVIh6R97vc7XK1cdND62bW2xw2Jt_pZIL--yWGH_o63WpJhcLhPuDtY0BOPxdXqt6EYt08m-jSUjQTKIFLpWijb_6hN2nJsX1PMw5SohyQNfVup2xOpWTn981Q0Pdj0ufwdfUwpvOGX-9wLnbv_oxRbyffzKv_GfwNXG2YaQ</recordid><startdate>20200607</startdate><enddate>20200607</enddate><creator>Zhang, Wen-Ying</creator><creator>Banerjee, Samya</creator><creator>Hughes, George M</creator><creator>Bridgewater, Hannah E</creator><creator>Song, Ji-Inn</creator><creator>Breeze, Ben G</creator><creator>Clarkson, Guy J</creator><creator>Coverdale, James P. C</creator><creator>Sanchez-Cano, Carlos</creator><creator>Ponte, Fortuna</creator><creator>Sicilia, Emilia</creator><creator>Sadler, Peter J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1769-9025</orcidid><orcidid>https://orcid.org/0000-0002-7979-9753</orcidid><orcidid>https://orcid.org/0000-0002-4431-9510</orcidid><orcidid>https://orcid.org/0000-0002-0180-6423</orcidid><orcidid>https://orcid.org/0000-0003-3076-3191</orcidid><orcidid>https://orcid.org/0000-0001-7850-045X</orcidid><orcidid>https://orcid.org/0000-0002-9522-0019</orcidid><orcidid>https://orcid.org/0000-0002-0880-4447</orcidid><orcidid>https://orcid.org/0000-0002-7779-6620</orcidid><orcidid>https://orcid.org/0000-0001-9160-1941</orcidid><orcidid>https://orcid.org/0000-0003-4393-4447</orcidid><orcidid>https://orcid.org/0000-0001-5952-9927</orcidid></search><sort><creationdate>20200607</creationdate><title>Ligand-centred redox activation of inert organoiridium anticancer catalysts</title><author>Zhang, Wen-Ying ; Banerjee, Samya ; Hughes, George M ; Bridgewater, Hannah E ; Song, Ji-Inn ; Breeze, Ben G ; Clarkson, Guy J ; Coverdale, James P. C ; Sanchez-Cano, Carlos ; Ponte, Fortuna ; Sicilia, Emilia ; Sadler, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-322c746f8bafa4872fc1604f5d6414f145529f109f4f1961e54c015e233a19333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Cancer</topic><topic>Catalysts</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Crystallography</topic><topic>Drugs</topic><topic>Glutathione</topic><topic>Hydroxyl radicals</topic><topic>Iridium compounds</topic><topic>Ligands</topic><topic>Oxidation</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wen-Ying</creatorcontrib><creatorcontrib>Banerjee, Samya</creatorcontrib><creatorcontrib>Hughes, George M</creatorcontrib><creatorcontrib>Bridgewater, Hannah E</creatorcontrib><creatorcontrib>Song, Ji-Inn</creatorcontrib><creatorcontrib>Breeze, Ben G</creatorcontrib><creatorcontrib>Clarkson, Guy J</creatorcontrib><creatorcontrib>Coverdale, James P. C</creatorcontrib><creatorcontrib>Sanchez-Cano, Carlos</creatorcontrib><creatorcontrib>Ponte, Fortuna</creatorcontrib><creatorcontrib>Sicilia, Emilia</creatorcontrib><creatorcontrib>Sadler, Peter J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wen-Ying</au><au>Banerjee, Samya</au><au>Hughes, George M</au><au>Bridgewater, Hannah E</au><au>Song, Ji-Inn</au><au>Breeze, Ben G</au><au>Clarkson, Guy J</au><au>Coverdale, James P. C</au><au>Sanchez-Cano, Carlos</au><au>Ponte, Fortuna</au><au>Sicilia, Emilia</au><au>Sadler, Peter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-centred redox activation of inert organoiridium anticancer catalysts</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-06-07</date><risdate>2020</risdate><volume>11</volume><issue>21</issue><spage>5466</spage><epage>548</epage><pages>5466-548</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates. Here, we show that half-sandwich iodido cyclopentadienyl iridium(
iii
) azopyridine complexes exhibit potent antiproliferative activity towards cancer cells, in most cases more potent than cisplatin. Despite their inertness towards aquation, these iodido complexes can undergo redox activation by attack of the abundant intracellular tripeptide glutathione (GSH) on the chelated azopyridine ligand to generate paramagnetic intermediates, and hydroxyl radicals, together with thiolate-bridged dinuclear iridium complexes, and liberate reduced hydrazopyridine ligand. DFT calculations provided insight into the mechanism of this activation. GS
−
attack on the azo bond facilitates the substitution of iodide by GS
−
, and leads to formation of GSSG and superoxide if O
2
is present as an electron-acceptor, in a largely exergonic pathway. Reactions of these iodido complexes with GSH generate
Ir-SG
complexes, which are catalysts for GSH oxidation. The complexes promoted elevated levels of reactive oxygen species (ROS) in human lung cancer cells. This remarkable ligand-centred activation mechanism coupled to redox reactions adds a new dimension to the design of organoiridium anticancer prodrugs.
Organometallic complexes with novel activation mechanisms are attractive anticancer drug candidates.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34094073</pmid><doi>10.1039/d0sc00897d</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1769-9025</orcidid><orcidid>https://orcid.org/0000-0002-7979-9753</orcidid><orcidid>https://orcid.org/0000-0002-4431-9510</orcidid><orcidid>https://orcid.org/0000-0002-0180-6423</orcidid><orcidid>https://orcid.org/0000-0003-3076-3191</orcidid><orcidid>https://orcid.org/0000-0001-7850-045X</orcidid><orcidid>https://orcid.org/0000-0002-9522-0019</orcidid><orcidid>https://orcid.org/0000-0002-0880-4447</orcidid><orcidid>https://orcid.org/0000-0002-7779-6620</orcidid><orcidid>https://orcid.org/0000-0001-9160-1941</orcidid><orcidid>https://orcid.org/0000-0003-4393-4447</orcidid><orcidid>https://orcid.org/0000-0001-5952-9927</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2020-06, Vol.11 (21), p.5466-548 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2538048991 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Activation Cancer Catalysts Chemical compounds Chemistry Crystallography Drugs Glutathione Hydroxyl radicals Iridium compounds Ligands Oxidation Redox reactions |
title | Ligand-centred redox activation of inert organoiridium anticancer catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-centred%20redox%20activation%20of%20inert%20organoiridium%20anticancer%20catalysts&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Zhang,%20Wen-Ying&rft.date=2020-06-07&rft.volume=11&rft.issue=21&rft.spage=5466&rft.epage=548&rft.pages=5466-548&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc00897d&rft_dat=%3Cproquest_pubme%3E2408838632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408838632&rft_id=info:pmid/34094073&rfr_iscdi=true |