Bayesian identification of oil spill source parameters from image contours

Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources could help to investigate unreported spills, and satellite imagery can be an effective tool for this purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2021-08, Vol.169, p.112514-112514, Article 112514
Hauptverfasser: El Mohtar, Samah, Ait-El-Fquih, Boujemaa, Knio, Omar, Lakkis, Issam, Hoteit, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112514
container_issue
container_start_page 112514
container_title Marine pollution bulletin
container_volume 169
creator El Mohtar, Samah
Ait-El-Fquih, Boujemaa
Knio, Omar
Lakkis, Issam
Hoteit, Ibrahim
description Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources could help to investigate unreported spills, and satellite imagery can be an effective tool for this purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours of oil slicks detected by remotely sensed images. Five parameters of interest are estimated: the 2D coordinates of the source of release, the time and duration of the spill, and the quantity of oil released. Two synthetic experiments of a spill released from a fixed point source are investigated, where a contour is fully observed in the first case, while two contours are partially observed at two different times in the second. In both experiments, the proposed method is able to provide good estimates of the parameters along with a level of confidence reflected by the uncertainties within. •A Bayesian approach to oil spill source identification from oil contours is presented.•Full and partial images of oil slicks are used to identify the source of a spill.•Good estimates of the test spills' location, time, duration and quantity are obtained.•Confidence in the estimated source parameters is assessed through the posterior.
doi_str_mv 10.1016/j.marpolbul.2021.112514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2538048570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X21005488</els_id><sourcerecordid>2564173886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a6906d8fb961f13fd1e9f3856b37118d47e3f525ac4a6706bea8acb2d69493f73</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-Bgtu3LTm0Sbpchx8MuBGwV1I0xvJ0DY16Qjz781QceHGzb2L-53DPQehS4ILggm_2Ra9DqPvml1XUExJQQitSHmEFkSKOmeMs2O0wJhWOaP8_RSdxbjFGAsqyAI93-o9RKeHzLUwTM46oyfnh8zbzLsui6Pr0vS7YCAbddA9TBBiZoPvM9frD8iMH6Z0j-foxOouwsXPXqK3-7vX9WO-eXl4Wq82uWGCT7nmNeattE3NiSXMtgRqy2TFGyYIkW0pgNmKVtqUmgvMG9BSm4a2vC5rZgVbouvZdwz-cwdxUr2LBrpOD-B3UdGKSVzKSuCEXv1Bt-nTIX2XKF4SwaTkiRIzZYKPMYBVY0jRwl4RrA4dq6367VgdOlZzx0m5mpWQ8n45CCoaB4OB1gUwk2q9-9fjG7FSiYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564173886</pqid></control><display><type>article</type><title>Bayesian identification of oil spill source parameters from image contours</title><source>Elsevier ScienceDirect Journals</source><creator>El Mohtar, Samah ; Ait-El-Fquih, Boujemaa ; Knio, Omar ; Lakkis, Issam ; Hoteit, Ibrahim</creator><creatorcontrib>El Mohtar, Samah ; Ait-El-Fquih, Boujemaa ; Knio, Omar ; Lakkis, Issam ; Hoteit, Ibrahim</creatorcontrib><description>Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources could help to investigate unreported spills, and satellite imagery can be an effective tool for this purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours of oil slicks detected by remotely sensed images. Five parameters of interest are estimated: the 2D coordinates of the source of release, the time and duration of the spill, and the quantity of oil released. Two synthetic experiments of a spill released from a fixed point source are investigated, where a contour is fully observed in the first case, while two contours are partially observed at two different times in the second. In both experiments, the proposed method is able to provide good estimates of the parameters along with a level of confidence reflected by the uncertainties within. •A Bayesian approach to oil spill source identification from oil contours is presented.•Full and partial images of oil slicks are used to identify the source of a spill.•Good estimates of the test spills' location, time, duration and quantity are obtained.•Confidence in the estimated source parameters is assessed through the posterior.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2021.112514</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bayesian analysis ; Bayesian estimation ; Coastal environments ; Coastal zone ; Contours ; Imagery ; Markov chain Monte Carlo ; Oil pollution ; Oil slicks ; Oil spills ; Parameter estimation ; Parameter identification ; Parameters ; Pollution sources ; Probability theory ; Remote sensing ; Remotely sensed imagery ; Satellite imagery ; Slicks ; Source identification ; Spaceborne remote sensing ; Uncertainty quantification ; Water pollution</subject><ispartof>Marine pollution bulletin, 2021-08, Vol.169, p.112514-112514, Article 112514</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a6906d8fb961f13fd1e9f3856b37118d47e3f525ac4a6706bea8acb2d69493f73</citedby><cites>FETCH-LOGICAL-c376t-a6906d8fb961f13fd1e9f3856b37118d47e3f525ac4a6706bea8acb2d69493f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025326X21005488$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Ait-El-Fquih, Boujemaa</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Lakkis, Issam</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><title>Bayesian identification of oil spill source parameters from image contours</title><title>Marine pollution bulletin</title><description>Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources could help to investigate unreported spills, and satellite imagery can be an effective tool for this purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours of oil slicks detected by remotely sensed images. Five parameters of interest are estimated: the 2D coordinates of the source of release, the time and duration of the spill, and the quantity of oil released. Two synthetic experiments of a spill released from a fixed point source are investigated, where a contour is fully observed in the first case, while two contours are partially observed at two different times in the second. In both experiments, the proposed method is able to provide good estimates of the parameters along with a level of confidence reflected by the uncertainties within. •A Bayesian approach to oil spill source identification from oil contours is presented.•Full and partial images of oil slicks are used to identify the source of a spill.•Good estimates of the test spills' location, time, duration and quantity are obtained.•Confidence in the estimated source parameters is assessed through the posterior.</description><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Coastal environments</subject><subject>Coastal zone</subject><subject>Contours</subject><subject>Imagery</subject><subject>Markov chain Monte Carlo</subject><subject>Oil pollution</subject><subject>Oil slicks</subject><subject>Oil spills</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Pollution sources</subject><subject>Probability theory</subject><subject>Remote sensing</subject><subject>Remotely sensed imagery</subject><subject>Satellite imagery</subject><subject>Slicks</subject><subject>Source identification</subject><subject>Spaceborne remote sensing</subject><subject>Uncertainty quantification</subject><subject>Water pollution</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-Bgtu3LTm0Sbpchx8MuBGwV1I0xvJ0DY16Qjz781QceHGzb2L-53DPQehS4ILggm_2Ra9DqPvml1XUExJQQitSHmEFkSKOmeMs2O0wJhWOaP8_RSdxbjFGAsqyAI93-o9RKeHzLUwTM46oyfnh8zbzLsui6Pr0vS7YCAbddA9TBBiZoPvM9frD8iMH6Z0j-foxOouwsXPXqK3-7vX9WO-eXl4Wq82uWGCT7nmNeattE3NiSXMtgRqy2TFGyYIkW0pgNmKVtqUmgvMG9BSm4a2vC5rZgVbouvZdwz-cwdxUr2LBrpOD-B3UdGKSVzKSuCEXv1Bt-nTIX2XKF4SwaTkiRIzZYKPMYBVY0jRwl4RrA4dq6367VgdOlZzx0m5mpWQ8n45CCoaB4OB1gUwk2q9-9fjG7FSiYc</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>El Mohtar, Samah</creator><creator>Ait-El-Fquih, Boujemaa</creator><creator>Knio, Omar</creator><creator>Lakkis, Issam</creator><creator>Hoteit, Ibrahim</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202108</creationdate><title>Bayesian identification of oil spill source parameters from image contours</title><author>El Mohtar, Samah ; Ait-El-Fquih, Boujemaa ; Knio, Omar ; Lakkis, Issam ; Hoteit, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a6906d8fb961f13fd1e9f3856b37118d47e3f525ac4a6706bea8acb2d69493f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Coastal environments</topic><topic>Coastal zone</topic><topic>Contours</topic><topic>Imagery</topic><topic>Markov chain Monte Carlo</topic><topic>Oil pollution</topic><topic>Oil slicks</topic><topic>Oil spills</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Pollution sources</topic><topic>Probability theory</topic><topic>Remote sensing</topic><topic>Remotely sensed imagery</topic><topic>Satellite imagery</topic><topic>Slicks</topic><topic>Source identification</topic><topic>Spaceborne remote sensing</topic><topic>Uncertainty quantification</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Mohtar, Samah</creatorcontrib><creatorcontrib>Ait-El-Fquih, Boujemaa</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Lakkis, Issam</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Mohtar, Samah</au><au>Ait-El-Fquih, Boujemaa</au><au>Knio, Omar</au><au>Lakkis, Issam</au><au>Hoteit, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian identification of oil spill source parameters from image contours</atitle><jtitle>Marine pollution bulletin</jtitle><date>2021-08</date><risdate>2021</risdate><volume>169</volume><spage>112514</spage><epage>112514</epage><pages>112514-112514</pages><artnum>112514</artnum><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>Oil spills at sea pose a serious threat to coastal environments. Identifying oil pollution sources could help to investigate unreported spills, and satellite imagery can be an effective tool for this purpose. We present a Bayesian approach to estimate the source parameters of a spill from contours of oil slicks detected by remotely sensed images. Five parameters of interest are estimated: the 2D coordinates of the source of release, the time and duration of the spill, and the quantity of oil released. Two synthetic experiments of a spill released from a fixed point source are investigated, where a contour is fully observed in the first case, while two contours are partially observed at two different times in the second. In both experiments, the proposed method is able to provide good estimates of the parameters along with a level of confidence reflected by the uncertainties within. •A Bayesian approach to oil spill source identification from oil contours is presented.•Full and partial images of oil slicks are used to identify the source of a spill.•Good estimates of the test spills' location, time, duration and quantity are obtained.•Confidence in the estimated source parameters is assessed through the posterior.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpolbul.2021.112514</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2021-08, Vol.169, p.112514-112514, Article 112514
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_2538048570
source Elsevier ScienceDirect Journals
subjects Bayesian analysis
Bayesian estimation
Coastal environments
Coastal zone
Contours
Imagery
Markov chain Monte Carlo
Oil pollution
Oil slicks
Oil spills
Parameter estimation
Parameter identification
Parameters
Pollution sources
Probability theory
Remote sensing
Remotely sensed imagery
Satellite imagery
Slicks
Source identification
Spaceborne remote sensing
Uncertainty quantification
Water pollution
title Bayesian identification of oil spill source parameters from image contours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20identification%20of%20oil%20spill%20source%20parameters%20from%20image%20contours&rft.jtitle=Marine%20pollution%20bulletin&rft.au=El%20Mohtar,%20Samah&rft.date=2021-08&rft.volume=169&rft.spage=112514&rft.epage=112514&rft.pages=112514-112514&rft.artnum=112514&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2021.112514&rft_dat=%3Cproquest_cross%3E2564173886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564173886&rft_id=info:pmid/&rft_els_id=S0025326X21005488&rfr_iscdi=true