Activation chemistry drives the emergence of functionalised protocells

The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-10, Vol.11 (39), p.1688-1697
Hauptverfasser: Bonfio, Claudia, Russell, David A, Green, Nicholas J, Mariani, Angelica, Sutherland, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1697
container_issue 39
container_start_page 1688
container_title Chemical science (Cambridge)
container_volume 11
creator Bonfio, Claudia
Russell, David A
Green, Nicholas J
Mariani, Angelica
Sutherland, John D
description The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells. The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life.
doi_str_mv 10.1039/d0sc04506c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2538047375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450757559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-d9867503b21a50e5b48b743af629a314d2fa57020e37be2a9846099c5955cb833</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYMoKurFu1DxIsLq5KtpLsKyfoLgQT2HNJ26lW6zJu2C_71ZV1b04Fwy8H485uURckjhnALXFxVEB0JC7jbILgNBR7nkenO9M9ghBzG-QRrOqWRqm-xwAVpwRnfJzdj1zcL2je8yN8VZE_vwkVWhWWDM-ilmOMPwip3DzNdZPXRuidq2iVhl8-B777Bt4z7Zqm0b8eD73SMvN9fPk7vRw-Pt_WT8MHKSF_2o0kWuJPCSUSsBZSmKUglu65xpy6moWG2lAgbIVYnM6kLkoLWTWkpXFpzvkcuV73woZ1g57PpgWzMPzcyGD-NtY34rXTM1r35hCpozwZcGp98Gwb8PGHuTIi8j2A79EA1Ld4JQXMmEnvxB3_wQUvZEpQ9XUkmpE3W2olzwMQas18dQMMuGzBU8Tb4amiT4aAWH6NbcT4NJP_5PN_Oq5p8hBpav</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450757559</pqid></control><display><type>article</type><title>Activation chemistry drives the emergence of functionalised protocells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Bonfio, Claudia ; Russell, David A ; Green, Nicholas J ; Mariani, Angelica ; Sutherland, John D</creator><creatorcontrib>Bonfio, Claudia ; Russell, David A ; Green, Nicholas J ; Mariani, Angelica ; Sutherland, John D</creatorcontrib><description>The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells. The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc04506c</identifier><identifier>PMID: 34094321</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Amino acids ; Chemistry ; Fatty acids ; Membranes ; Nucleotides ; Peptides ; Phosphates ; Prebiotics ; Vesicles</subject><ispartof>Chemical science (Cambridge), 2020-10, Vol.11 (39), p.1688-1697</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-d9867503b21a50e5b48b743af629a314d2fa57020e37be2a9846099c5955cb833</citedby><cites>FETCH-LOGICAL-c538t-d9867503b21a50e5b48b743af629a314d2fa57020e37be2a9846099c5955cb833</cites><orcidid>0000-0003-4160-1163 ; 0000-0002-2182-4178 ; 0000-0001-7099-4731 ; 0000-0002-2547-4224 ; 0000-0002-3874-7359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162433/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162433/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Bonfio, Claudia</creatorcontrib><creatorcontrib>Russell, David A</creatorcontrib><creatorcontrib>Green, Nicholas J</creatorcontrib><creatorcontrib>Mariani, Angelica</creatorcontrib><creatorcontrib>Sutherland, John D</creatorcontrib><title>Activation chemistry drives the emergence of functionalised protocells</title><title>Chemical science (Cambridge)</title><description>The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells. The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life.</description><subject>Activation</subject><subject>Amino acids</subject><subject>Chemistry</subject><subject>Fatty acids</subject><subject>Membranes</subject><subject>Nucleotides</subject><subject>Peptides</subject><subject>Phosphates</subject><subject>Prebiotics</subject><subject>Vesicles</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LxDAQxYMoKurFu1DxIsLq5KtpLsKyfoLgQT2HNJ26lW6zJu2C_71ZV1b04Fwy8H485uURckjhnALXFxVEB0JC7jbILgNBR7nkenO9M9ghBzG-QRrOqWRqm-xwAVpwRnfJzdj1zcL2je8yN8VZE_vwkVWhWWDM-ilmOMPwip3DzNdZPXRuidq2iVhl8-B777Bt4z7Zqm0b8eD73SMvN9fPk7vRw-Pt_WT8MHKSF_2o0kWuJPCSUSsBZSmKUglu65xpy6moWG2lAgbIVYnM6kLkoLWTWkpXFpzvkcuV73woZ1g57PpgWzMPzcyGD-NtY34rXTM1r35hCpozwZcGp98Gwb8PGHuTIi8j2A79EA1Ld4JQXMmEnvxB3_wQUvZEpQ9XUkmpE3W2olzwMQas18dQMMuGzBU8Tb4amiT4aAWH6NbcT4NJP_5PN_Oq5p8hBpav</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Bonfio, Claudia</creator><creator>Russell, David A</creator><creator>Green, Nicholas J</creator><creator>Mariani, Angelica</creator><creator>Sutherland, John D</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4160-1163</orcidid><orcidid>https://orcid.org/0000-0002-2182-4178</orcidid><orcidid>https://orcid.org/0000-0001-7099-4731</orcidid><orcidid>https://orcid.org/0000-0002-2547-4224</orcidid><orcidid>https://orcid.org/0000-0002-3874-7359</orcidid></search><sort><creationdate>20201021</creationdate><title>Activation chemistry drives the emergence of functionalised protocells</title><author>Bonfio, Claudia ; Russell, David A ; Green, Nicholas J ; Mariani, Angelica ; Sutherland, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-d9867503b21a50e5b48b743af629a314d2fa57020e37be2a9846099c5955cb833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Amino acids</topic><topic>Chemistry</topic><topic>Fatty acids</topic><topic>Membranes</topic><topic>Nucleotides</topic><topic>Peptides</topic><topic>Phosphates</topic><topic>Prebiotics</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonfio, Claudia</creatorcontrib><creatorcontrib>Russell, David A</creatorcontrib><creatorcontrib>Green, Nicholas J</creatorcontrib><creatorcontrib>Mariani, Angelica</creatorcontrib><creatorcontrib>Sutherland, John D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonfio, Claudia</au><au>Russell, David A</au><au>Green, Nicholas J</au><au>Mariani, Angelica</au><au>Sutherland, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation chemistry drives the emergence of functionalised protocells</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>11</volume><issue>39</issue><spage>1688</spage><epage>1697</epage><pages>1688-1697</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life. Early cells probably relied upon compatible and interconnected chemistries to link RNA, peptides and membranes. Here we show that several types of vesicles, composed of prebiotically plausible mixtures of amphiphiles, spontaneously form and sustain the methyl isocyanide-mediated activation of amino acids, peptides and nucleotides. Activation chemistry also drives the advantageous conversion of reactive monoacylglycerol phosphates into inert cyclophospholipids, thus supporting their potential role as major constituents of protocells. Moreover, activation of prebiotic building blocks within fatty acid-based vesicles yields lipidated species capable of localising to and functionalising primitive membranes. Our findings describe a potentially prebiotic scenario in which the components of primitive cells undergo activation and provide new species that might have enabled an increase in the functionality of protocells. The complexity of the simplest conceivable cell suggests that the chemistry of prebiotic mixtures needs to be explored to understand the intricate network of prebiotic reactions that led to the emergence of life.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34094321</pmid><doi>10.1039/d0sc04506c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4160-1163</orcidid><orcidid>https://orcid.org/0000-0002-2182-4178</orcidid><orcidid>https://orcid.org/0000-0001-7099-4731</orcidid><orcidid>https://orcid.org/0000-0002-2547-4224</orcidid><orcidid>https://orcid.org/0000-0002-3874-7359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-10, Vol.11 (39), p.1688-1697
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_2538047375
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Activation
Amino acids
Chemistry
Fatty acids
Membranes
Nucleotides
Peptides
Phosphates
Prebiotics
Vesicles
title Activation chemistry drives the emergence of functionalised protocells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20chemistry%20drives%20the%20emergence%20of%20functionalised%20protocells&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Bonfio,%20Claudia&rft.date=2020-10-21&rft.volume=11&rft.issue=39&rft.spage=1688&rft.epage=1697&rft.pages=1688-1697&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc04506c&rft_dat=%3Cproquest_rsc_p%3E2450757559%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450757559&rft_id=info:pmid/34094321&rfr_iscdi=true