Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory
Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic tran...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-07, Vol.13 (26), p.1136-11369 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11369 |
---|---|
container_issue | 26 |
container_start_page | 1136 |
container_title | Nanoscale |
container_volume | 13 |
creator | Wang, Yarong Huang, Weihong Zhang, Ziwei Fan, Lingchong Huang, Qiuyue Wang, Jiaxin Zhang, Yiming Zhang, Min |
description | Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic transistors (F-CNT-STs) with signal transmission and emotional learning functions are realized by adopting the poly(vinyl alcohol) (PVA)/SiO
2
proton-conducting electrolyte. Synaptic functions of biological synapses including excitatory and inhibitory behaviors are successfully emulated in the F-CNT-STs. Besides, synaptic plasticity such as spike-duration-dependent plasticity, spike-number-dependent plasticity, spike-amplitude-dependent plasticity, paired-pulse facilitation, short-term plasticity, and long-term plasticity have all been systematically characterized. Moreover, the F-CNT-STs also closely imitate the behavior of human brain learning and emotional memory functions. After 1000 bending cycles at a radius of 3 mm, both the transistor characteristics and the synaptic functions can still be implemented correctly, showing outstanding mechanical capability. The realized F-CNT-STs possess low operating voltage, quick response, and ultra-low power consumption, indicating their high potential to work in low-power biological systems and artificial intelligence systems. The flexible artificial synaptic transistor enables its potential to be generally applicable to various flexible wearable biological and intelligent applications.
The realized artificial flexible carbon nanotube synaptic transistors possess low operating voltage, quick response and ultra-low power consumption, indicating their high potential in biological systems and artificial intelligence systems. |
doi_str_mv | 10.1039/d1nr02099d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2538044261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549217488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-48e9f66a98b166ef001036646293c893cb99126bca574ea6e228da9390b059743</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMovjfuhYIbUap5NZMsZcYXiII4Sylp5hY6dJKapIzz781YGcGVgZBD-M7l3nMROiH4imCmrmfEekyxUrMttE8xxzljI7q90YLvoYMQ5hgLxQTbRXuMYyUKQffR-7SNXrdumXduCT6rW_hsqhay9GtDpz3YmBntK2czq62LfQVZWFndxcYMUBOi8yGrnc9g4WLjrG6zRZJ-dYR2at0GOP55D9H07vZt_JA_vdw_jm-ecsMpiTmXoGohtJIVEQJqjNNcQnBBFTMy3UopQkVldDHioAVQKmdaMYUrXKgRZ4fofKjbeffRQ4jlogkG2lZbcH0oacEk5pwKktCzP-jc9T61vKa4omTEpUzUxUAZ70LwUJedbxbar0qCy3Xo5YQ8v36HPknw5QAvoXJ1MA1YAxsDTrEXkpO0i3TWDcj_0-Mm6nWiY9fbmKyng9UHs3H8bp99Af9AnWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549217488</pqid></control><display><type>article</type><title>Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory</title><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Yarong ; Huang, Weihong ; Zhang, Ziwei ; Fan, Lingchong ; Huang, Qiuyue ; Wang, Jiaxin ; Zhang, Yiming ; Zhang, Min</creator><creatorcontrib>Wang, Yarong ; Huang, Weihong ; Zhang, Ziwei ; Fan, Lingchong ; Huang, Qiuyue ; Wang, Jiaxin ; Zhang, Yiming ; Zhang, Min</creatorcontrib><description>Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic transistors (F-CNT-STs) with signal transmission and emotional learning functions are realized by adopting the poly(vinyl alcohol) (PVA)/SiO
2
proton-conducting electrolyte. Synaptic functions of biological synapses including excitatory and inhibitory behaviors are successfully emulated in the F-CNT-STs. Besides, synaptic plasticity such as spike-duration-dependent plasticity, spike-number-dependent plasticity, spike-amplitude-dependent plasticity, paired-pulse facilitation, short-term plasticity, and long-term plasticity have all been systematically characterized. Moreover, the F-CNT-STs also closely imitate the behavior of human brain learning and emotional memory functions. After 1000 bending cycles at a radius of 3 mm, both the transistor characteristics and the synaptic functions can still be implemented correctly, showing outstanding mechanical capability. The realized F-CNT-STs possess low operating voltage, quick response, and ultra-low power consumption, indicating their high potential to work in low-power biological systems and artificial intelligence systems. The flexible artificial synaptic transistor enables its potential to be generally applicable to various flexible wearable biological and intelligent applications.
The realized artificial flexible carbon nanotube synaptic transistors possess low operating voltage, quick response and ultra-low power consumption, indicating their high potential in biological systems and artificial intelligence systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02099d</identifier><identifier>PMID: 34096562</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Artificial intelligence ; Bionics ; Brain ; Carbon nanotubes ; Chemistry ; Chemistry, Multidisciplinary ; Interactive systems ; Learning ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Polyvinyl alcohol ; Power consumption ; Power management ; Science & Technology ; Science & Technology - Other Topics ; Semiconductor devices ; Signal transmission ; Silicon dioxide ; Spikes ; Synapses ; Technology ; Transistors</subject><ispartof>Nanoscale, 2021-07, Vol.13 (26), p.1136-11369</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000658410400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c421t-48e9f66a98b166ef001036646293c893cb99126bca574ea6e228da9390b059743</citedby><cites>FETCH-LOGICAL-c421t-48e9f66a98b166ef001036646293c893cb99126bca574ea6e228da9390b059743</cites><orcidid>0000-0001-7296-0631 ; 0000-0003-2443-1756 ; 0000-0002-2225-8024 ; 0000-0001-9603-2362 ; 0000-0002-5526-9504 ; 0000-0002-7038-923X ; 0000-0002-4777-5730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,39267</link.rule.ids></links><search><creatorcontrib>Wang, Yarong</creatorcontrib><creatorcontrib>Huang, Weihong</creatorcontrib><creatorcontrib>Zhang, Ziwei</creatorcontrib><creatorcontrib>Fan, Lingchong</creatorcontrib><creatorcontrib>Huang, Qiuyue</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><title>Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory</title><title>Nanoscale</title><addtitle>NANOSCALE</addtitle><description>Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic transistors (F-CNT-STs) with signal transmission and emotional learning functions are realized by adopting the poly(vinyl alcohol) (PVA)/SiO
2
proton-conducting electrolyte. Synaptic functions of biological synapses including excitatory and inhibitory behaviors are successfully emulated in the F-CNT-STs. Besides, synaptic plasticity such as spike-duration-dependent plasticity, spike-number-dependent plasticity, spike-amplitude-dependent plasticity, paired-pulse facilitation, short-term plasticity, and long-term plasticity have all been systematically characterized. Moreover, the F-CNT-STs also closely imitate the behavior of human brain learning and emotional memory functions. After 1000 bending cycles at a radius of 3 mm, both the transistor characteristics and the synaptic functions can still be implemented correctly, showing outstanding mechanical capability. The realized F-CNT-STs possess low operating voltage, quick response, and ultra-low power consumption, indicating their high potential to work in low-power biological systems and artificial intelligence systems. The flexible artificial synaptic transistor enables its potential to be generally applicable to various flexible wearable biological and intelligent applications.
The realized artificial flexible carbon nanotube synaptic transistors possess low operating voltage, quick response and ultra-low power consumption, indicating their high potential in biological systems and artificial intelligence systems.</description><subject>Artificial intelligence</subject><subject>Bionics</subject><subject>Brain</subject><subject>Carbon nanotubes</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Interactive systems</subject><subject>Learning</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Polyvinyl alcohol</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Signal transmission</subject><subject>Silicon dioxide</subject><subject>Spikes</subject><subject>Synapses</subject><subject>Technology</subject><subject>Transistors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtLxDAUhYMovjfuhYIbUap5NZMsZcYXiII4Sylp5hY6dJKapIzz781YGcGVgZBD-M7l3nMROiH4imCmrmfEekyxUrMttE8xxzljI7q90YLvoYMQ5hgLxQTbRXuMYyUKQffR-7SNXrdumXduCT6rW_hsqhay9GtDpz3YmBntK2czq62LfQVZWFndxcYMUBOi8yGrnc9g4WLjrG6zRZJ-dYR2at0GOP55D9H07vZt_JA_vdw_jm-ecsMpiTmXoGohtJIVEQJqjNNcQnBBFTMy3UopQkVldDHioAVQKmdaMYUrXKgRZ4fofKjbeffRQ4jlogkG2lZbcH0oacEk5pwKktCzP-jc9T61vKa4omTEpUzUxUAZ70LwUJedbxbar0qCy3Xo5YQ8v36HPknw5QAvoXJ1MA1YAxsDTrEXkpO0i3TWDcj_0-Mm6nWiY9fbmKyng9UHs3H8bp99Af9AnWQ</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Wang, Yarong</creator><creator>Huang, Weihong</creator><creator>Zhang, Ziwei</creator><creator>Fan, Lingchong</creator><creator>Huang, Qiuyue</creator><creator>Wang, Jiaxin</creator><creator>Zhang, Yiming</creator><creator>Zhang, Min</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7296-0631</orcidid><orcidid>https://orcid.org/0000-0003-2443-1756</orcidid><orcidid>https://orcid.org/0000-0002-2225-8024</orcidid><orcidid>https://orcid.org/0000-0001-9603-2362</orcidid><orcidid>https://orcid.org/0000-0002-5526-9504</orcidid><orcidid>https://orcid.org/0000-0002-7038-923X</orcidid><orcidid>https://orcid.org/0000-0002-4777-5730</orcidid></search><sort><creationdate>20210708</creationdate><title>Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory</title><author>Wang, Yarong ; Huang, Weihong ; Zhang, Ziwei ; Fan, Lingchong ; Huang, Qiuyue ; Wang, Jiaxin ; Zhang, Yiming ; Zhang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-48e9f66a98b166ef001036646293c893cb99126bca574ea6e228da9390b059743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Bionics</topic><topic>Brain</topic><topic>Carbon nanotubes</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Interactive systems</topic><topic>Learning</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Polyvinyl alcohol</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Signal transmission</topic><topic>Silicon dioxide</topic><topic>Spikes</topic><topic>Synapses</topic><topic>Technology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yarong</creatorcontrib><creatorcontrib>Huang, Weihong</creatorcontrib><creatorcontrib>Zhang, Ziwei</creatorcontrib><creatorcontrib>Fan, Lingchong</creatorcontrib><creatorcontrib>Huang, Qiuyue</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Zhang, Yiming</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yarong</au><au>Huang, Weihong</au><au>Zhang, Ziwei</au><au>Fan, Lingchong</au><au>Huang, Qiuyue</au><au>Wang, Jiaxin</au><au>Zhang, Yiming</au><au>Zhang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory</atitle><jtitle>Nanoscale</jtitle><stitle>NANOSCALE</stitle><date>2021-07-08</date><risdate>2021</risdate><volume>13</volume><issue>26</issue><spage>1136</spage><epage>11369</epage><pages>1136-11369</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic transistors (F-CNT-STs) with signal transmission and emotional learning functions are realized by adopting the poly(vinyl alcohol) (PVA)/SiO
2
proton-conducting electrolyte. Synaptic functions of biological synapses including excitatory and inhibitory behaviors are successfully emulated in the F-CNT-STs. Besides, synaptic plasticity such as spike-duration-dependent plasticity, spike-number-dependent plasticity, spike-amplitude-dependent plasticity, paired-pulse facilitation, short-term plasticity, and long-term plasticity have all been systematically characterized. Moreover, the F-CNT-STs also closely imitate the behavior of human brain learning and emotional memory functions. After 1000 bending cycles at a radius of 3 mm, both the transistor characteristics and the synaptic functions can still be implemented correctly, showing outstanding mechanical capability. The realized F-CNT-STs possess low operating voltage, quick response, and ultra-low power consumption, indicating their high potential to work in low-power biological systems and artificial intelligence systems. The flexible artificial synaptic transistor enables its potential to be generally applicable to various flexible wearable biological and intelligent applications.
The realized artificial flexible carbon nanotube synaptic transistors possess low operating voltage, quick response and ultra-low power consumption, indicating their high potential in biological systems and artificial intelligence systems.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34096562</pmid><doi>10.1039/d1nr02099d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7296-0631</orcidid><orcidid>https://orcid.org/0000-0003-2443-1756</orcidid><orcidid>https://orcid.org/0000-0002-2225-8024</orcidid><orcidid>https://orcid.org/0000-0001-9603-2362</orcidid><orcidid>https://orcid.org/0000-0002-5526-9504</orcidid><orcidid>https://orcid.org/0000-0002-7038-923X</orcidid><orcidid>https://orcid.org/0000-0002-4777-5730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-07, Vol.13 (26), p.1136-11369 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2538044261 |
source | Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Artificial intelligence Bionics Brain Carbon nanotubes Chemistry Chemistry, Multidisciplinary Interactive systems Learning Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied Polyvinyl alcohol Power consumption Power management Science & Technology Science & Technology - Other Topics Semiconductor devices Signal transmission Silicon dioxide Spikes Synapses Technology Transistors |
title | Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralow-power%20flexible%20transparent%20carbon%20nanotube%20synaptic%20transistors%20for%20emotional%20memory&rft.jtitle=Nanoscale&rft.au=Wang,%20Yarong&rft.date=2021-07-08&rft.volume=13&rft.issue=26&rft.spage=1136&rft.epage=11369&rft.pages=1136-11369&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02099d&rft_dat=%3Cproquest_cross%3E2549217488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549217488&rft_id=info:pmid/34096562&rfr_iscdi=true |