Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling
Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a cano...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6546) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6546 |
container_start_page | |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 372 |
creator | Zareie, Pirooz Szeto, Christopher Farenc, Carine Gunasinghe, Sachith D. Kolawole, Elizabeth M. Nguyen, Angela Blyth, Chantelle Sng, Xavier Y. X. Li, Jasmine Jones, Claerwen M. Fulcher, Alex J. Jacobs, Jesica R. Wei, Qianru Wojciech, Lukasz Petersen, Jan Gascoigne, Nicholas R.J. Evavold, Brian D. Gaus, Katharina Gras, Stephanie Rossjohn, Jamie La Gruta, Nicole L. |
description | Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie
et al.
tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet.
Science
, abe9124, this issue p.
eabe9124
; see also abj2937, p.
1038
The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules.
T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17
+
TCRs from the naïve mouse CD8
+
T cell repertoire that recognizes the H-2D
b
–NP
366
epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints. |
doi_str_mv | 10.1126/science.abe9124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2537646146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536847679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqUws1piYUnrn8SORxQBRQKxlDlynJvKJbWDnQ5svANvyJPg0kxMV7r3fFefDkLXlCwoZWIZjQVnYKEbUJTlJ2hGiSoyxQg_RTNCuMhKIotzdBHjlpB0U3yG1pV23lmje7zGBvoeBzAwjD7g1pt36zbYOzykjW3h5-v7ZVVhGzHECG60KdUlckpGu3G6T5FLdNbpPsLVNOfo7eF-Xa2y59fHp-ruOTOcsDHjUgqqC0pLRopcaqkocC5zIB1TTaFkbgQvTSlZq1TRtKIUSpq2NU1HSk04n6Pb498h-I89xLHe2Xiooh34faxZwaXIBc1FQm_-oVu_D6nuHyXKXAqpErU8Uib4GAN09RDsTofPmpL6YLmeLNeTZf4LVh5xTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536847679</pqid></control><display><type>article</type><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><source>American Association for the Advancement of Science</source><creator>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</creator><creatorcontrib>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</creatorcontrib><description>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie
et al.
tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet.
Science
, abe9124, this issue p.
eabe9124
; see also abj2937, p.
1038
The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules.
T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17
+
TCRs from the naïve mouse CD8
+
T cell repertoire that recognizes the H-2D
b
–NP
366
epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe9124</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Affinity ; Antigens ; Autoantigens ; Binding ; CD3 antigen ; CD4 antigen ; CD8 antigen ; Cell activation ; Clustering ; Complementarity ; Cross-reactivity ; Docking ; Energy transfer ; Epitopes ; Fluorescence ; Fluorescence resonance energy transfer ; Histocompatibility antigen H-2 ; Immune response ; Immune system ; In vivo methods and tests ; Influenza ; Influenza A ; Lck protein ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Peptides ; Polarity ; Receptors ; Recognition ; Recruitment ; Signal transduction ; Signaling ; T cell receptors ; Thymus ; Topology ; Viruses</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6546)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</citedby><cites>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</cites><orcidid>0000-0001-5358-9363 ; 0000-0001-6383-3032 ; 0000-0003-3784-5210 ; 0000-0002-8555-834X ; 0000-0003-1610-515X ; 0000-0002-6278-7211 ; 0000-0002-6684-7904 ; 0000-0001-9980-4225 ; 0000-0001-7424-2123 ; 0000-0001-7416-038X ; 0000-0002-2020-7522 ; 0000-0001-6000-2305 ; 0000-0002-0521-6674 ; 0000-0002-3561-3494 ; 0000-0002-7154-369X ; 0000-0003-3138-0037 ; 0000-0002-2045-6342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Zareie, Pirooz</creatorcontrib><creatorcontrib>Szeto, Christopher</creatorcontrib><creatorcontrib>Farenc, Carine</creatorcontrib><creatorcontrib>Gunasinghe, Sachith D.</creatorcontrib><creatorcontrib>Kolawole, Elizabeth M.</creatorcontrib><creatorcontrib>Nguyen, Angela</creatorcontrib><creatorcontrib>Blyth, Chantelle</creatorcontrib><creatorcontrib>Sng, Xavier Y. X.</creatorcontrib><creatorcontrib>Li, Jasmine</creatorcontrib><creatorcontrib>Jones, Claerwen M.</creatorcontrib><creatorcontrib>Fulcher, Alex J.</creatorcontrib><creatorcontrib>Jacobs, Jesica R.</creatorcontrib><creatorcontrib>Wei, Qianru</creatorcontrib><creatorcontrib>Wojciech, Lukasz</creatorcontrib><creatorcontrib>Petersen, Jan</creatorcontrib><creatorcontrib>Gascoigne, Nicholas R.J.</creatorcontrib><creatorcontrib>Evavold, Brian D.</creatorcontrib><creatorcontrib>Gaus, Katharina</creatorcontrib><creatorcontrib>Gras, Stephanie</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>La Gruta, Nicole L.</creatorcontrib><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><title>Science (American Association for the Advancement of Science)</title><description>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie
et al.
tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet.
Science
, abe9124, this issue p.
eabe9124
; see also abj2937, p.
1038
The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules.
T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17
+
TCRs from the naïve mouse CD8
+
T cell repertoire that recognizes the H-2D
b
–NP
366
epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</description><subject>Affinity</subject><subject>Antigens</subject><subject>Autoantigens</subject><subject>Binding</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Clustering</subject><subject>Complementarity</subject><subject>Cross-reactivity</subject><subject>Docking</subject><subject>Energy transfer</subject><subject>Epitopes</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Histocompatibility antigen H-2</subject><subject>Immune response</subject><subject>Immune system</subject><subject>In vivo methods and tests</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Lck protein</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Peptides</subject><subject>Polarity</subject><subject>Receptors</subject><subject>Recognition</subject><subject>Recruitment</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>T cell receptors</subject><subject>Thymus</subject><subject>Topology</subject><subject>Viruses</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAURi0EEqUws1piYUnrn8SORxQBRQKxlDlynJvKJbWDnQ5svANvyJPg0kxMV7r3fFefDkLXlCwoZWIZjQVnYKEbUJTlJ2hGiSoyxQg_RTNCuMhKIotzdBHjlpB0U3yG1pV23lmje7zGBvoeBzAwjD7g1pt36zbYOzykjW3h5-v7ZVVhGzHECG60KdUlckpGu3G6T5FLdNbpPsLVNOfo7eF-Xa2y59fHp-ruOTOcsDHjUgqqC0pLRopcaqkocC5zIB1TTaFkbgQvTSlZq1TRtKIUSpq2NU1HSk04n6Pb498h-I89xLHe2Xiooh34faxZwaXIBc1FQm_-oVu_D6nuHyXKXAqpErU8Uib4GAN09RDsTofPmpL6YLmeLNeTZf4LVh5xTw</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Zareie, Pirooz</creator><creator>Szeto, Christopher</creator><creator>Farenc, Carine</creator><creator>Gunasinghe, Sachith D.</creator><creator>Kolawole, Elizabeth M.</creator><creator>Nguyen, Angela</creator><creator>Blyth, Chantelle</creator><creator>Sng, Xavier Y. X.</creator><creator>Li, Jasmine</creator><creator>Jones, Claerwen M.</creator><creator>Fulcher, Alex J.</creator><creator>Jacobs, Jesica R.</creator><creator>Wei, Qianru</creator><creator>Wojciech, Lukasz</creator><creator>Petersen, Jan</creator><creator>Gascoigne, Nicholas R.J.</creator><creator>Evavold, Brian D.</creator><creator>Gaus, Katharina</creator><creator>Gras, Stephanie</creator><creator>Rossjohn, Jamie</creator><creator>La Gruta, Nicole L.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5358-9363</orcidid><orcidid>https://orcid.org/0000-0001-6383-3032</orcidid><orcidid>https://orcid.org/0000-0003-3784-5210</orcidid><orcidid>https://orcid.org/0000-0002-8555-834X</orcidid><orcidid>https://orcid.org/0000-0003-1610-515X</orcidid><orcidid>https://orcid.org/0000-0002-6278-7211</orcidid><orcidid>https://orcid.org/0000-0002-6684-7904</orcidid><orcidid>https://orcid.org/0000-0001-9980-4225</orcidid><orcidid>https://orcid.org/0000-0001-7424-2123</orcidid><orcidid>https://orcid.org/0000-0001-7416-038X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-6000-2305</orcidid><orcidid>https://orcid.org/0000-0002-0521-6674</orcidid><orcidid>https://orcid.org/0000-0002-3561-3494</orcidid><orcidid>https://orcid.org/0000-0002-7154-369X</orcidid><orcidid>https://orcid.org/0000-0003-3138-0037</orcidid><orcidid>https://orcid.org/0000-0002-2045-6342</orcidid></search><sort><creationdate>20210604</creationdate><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><author>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Antigens</topic><topic>Autoantigens</topic><topic>Binding</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Clustering</topic><topic>Complementarity</topic><topic>Cross-reactivity</topic><topic>Docking</topic><topic>Energy transfer</topic><topic>Epitopes</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Histocompatibility antigen H-2</topic><topic>Immune response</topic><topic>Immune system</topic><topic>In vivo methods and tests</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Lck protein</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Peptides</topic><topic>Polarity</topic><topic>Receptors</topic><topic>Recognition</topic><topic>Recruitment</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>T cell receptors</topic><topic>Thymus</topic><topic>Topology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zareie, Pirooz</creatorcontrib><creatorcontrib>Szeto, Christopher</creatorcontrib><creatorcontrib>Farenc, Carine</creatorcontrib><creatorcontrib>Gunasinghe, Sachith D.</creatorcontrib><creatorcontrib>Kolawole, Elizabeth M.</creatorcontrib><creatorcontrib>Nguyen, Angela</creatorcontrib><creatorcontrib>Blyth, Chantelle</creatorcontrib><creatorcontrib>Sng, Xavier Y. X.</creatorcontrib><creatorcontrib>Li, Jasmine</creatorcontrib><creatorcontrib>Jones, Claerwen M.</creatorcontrib><creatorcontrib>Fulcher, Alex J.</creatorcontrib><creatorcontrib>Jacobs, Jesica R.</creatorcontrib><creatorcontrib>Wei, Qianru</creatorcontrib><creatorcontrib>Wojciech, Lukasz</creatorcontrib><creatorcontrib>Petersen, Jan</creatorcontrib><creatorcontrib>Gascoigne, Nicholas R.J.</creatorcontrib><creatorcontrib>Evavold, Brian D.</creatorcontrib><creatorcontrib>Gaus, Katharina</creatorcontrib><creatorcontrib>Gras, Stephanie</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>La Gruta, Nicole L.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zareie, Pirooz</au><au>Szeto, Christopher</au><au>Farenc, Carine</au><au>Gunasinghe, Sachith D.</au><au>Kolawole, Elizabeth M.</au><au>Nguyen, Angela</au><au>Blyth, Chantelle</au><au>Sng, Xavier Y. X.</au><au>Li, Jasmine</au><au>Jones, Claerwen M.</au><au>Fulcher, Alex J.</au><au>Jacobs, Jesica R.</au><au>Wei, Qianru</au><au>Wojciech, Lukasz</au><au>Petersen, Jan</au><au>Gascoigne, Nicholas R.J.</au><au>Evavold, Brian D.</au><au>Gaus, Katharina</au><au>Gras, Stephanie</au><au>Rossjohn, Jamie</au><au>La Gruta, Nicole L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-06-04</date><risdate>2021</risdate><volume>372</volume><issue>6546</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie
et al.
tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet.
Science
, abe9124, this issue p.
eabe9124
; see also abj2937, p.
1038
The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules.
T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17
+
TCRs from the naïve mouse CD8
+
T cell repertoire that recognizes the H-2D
b
–NP
366
epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abe9124</doi><orcidid>https://orcid.org/0000-0001-5358-9363</orcidid><orcidid>https://orcid.org/0000-0001-6383-3032</orcidid><orcidid>https://orcid.org/0000-0003-3784-5210</orcidid><orcidid>https://orcid.org/0000-0002-8555-834X</orcidid><orcidid>https://orcid.org/0000-0003-1610-515X</orcidid><orcidid>https://orcid.org/0000-0002-6278-7211</orcidid><orcidid>https://orcid.org/0000-0002-6684-7904</orcidid><orcidid>https://orcid.org/0000-0001-9980-4225</orcidid><orcidid>https://orcid.org/0000-0001-7424-2123</orcidid><orcidid>https://orcid.org/0000-0001-7416-038X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-6000-2305</orcidid><orcidid>https://orcid.org/0000-0002-0521-6674</orcidid><orcidid>https://orcid.org/0000-0002-3561-3494</orcidid><orcidid>https://orcid.org/0000-0002-7154-369X</orcidid><orcidid>https://orcid.org/0000-0003-3138-0037</orcidid><orcidid>https://orcid.org/0000-0002-2045-6342</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6546) |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2537646146 |
source | American Association for the Advancement of Science |
subjects | Affinity Antigens Autoantigens Binding CD3 antigen CD4 antigen CD8 antigen Cell activation Clustering Complementarity Cross-reactivity Docking Energy transfer Epitopes Fluorescence Fluorescence resonance energy transfer Histocompatibility antigen H-2 Immune response Immune system In vivo methods and tests Influenza Influenza A Lck protein Lymphocytes Lymphocytes T Major histocompatibility complex Peptides Polarity Receptors Recognition Recruitment Signal transduction Signaling T cell receptors Thymus Topology Viruses |
title | Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20T%20cell%20receptor%20docking%20on%20peptide%E2%80%93MHC%20is%20essential%20for%20T%20cell%20signaling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zareie,%20Pirooz&rft.date=2021-06-04&rft.volume=372&rft.issue=6546&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe9124&rft_dat=%3Cproquest_cross%3E2536847679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536847679&rft_id=info:pmid/&rfr_iscdi=true |