Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling

Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a cano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6546)
Hauptverfasser: Zareie, Pirooz, Szeto, Christopher, Farenc, Carine, Gunasinghe, Sachith D., Kolawole, Elizabeth M., Nguyen, Angela, Blyth, Chantelle, Sng, Xavier Y. X., Li, Jasmine, Jones, Claerwen M., Fulcher, Alex J., Jacobs, Jesica R., Wei, Qianru, Wojciech, Lukasz, Petersen, Jan, Gascoigne, Nicholas R.J., Evavold, Brian D., Gaus, Katharina, Gras, Stephanie, Rossjohn, Jamie, La Gruta, Nicole L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6546
container_start_page
container_title Science (American Association for the Advancement of Science)
container_volume 372
creator Zareie, Pirooz
Szeto, Christopher
Farenc, Carine
Gunasinghe, Sachith D.
Kolawole, Elizabeth M.
Nguyen, Angela
Blyth, Chantelle
Sng, Xavier Y. X.
Li, Jasmine
Jones, Claerwen M.
Fulcher, Alex J.
Jacobs, Jesica R.
Wei, Qianru
Wojciech, Lukasz
Petersen, Jan
Gascoigne, Nicholas R.J.
Evavold, Brian D.
Gaus, Katharina
Gras, Stephanie
Rossjohn, Jamie
La Gruta, Nicole L.
description Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie et al. tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet. Science , abe9124, this issue p. eabe9124 ; see also abj2937, p. 1038 The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules. T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17 + TCRs from the naïve mouse CD8 + T cell repertoire that recognizes the H-2D b –NP 366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.
doi_str_mv 10.1126/science.abe9124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2537646146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536847679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqUws1piYUnrn8SORxQBRQKxlDlynJvKJbWDnQ5svANvyJPg0kxMV7r3fFefDkLXlCwoZWIZjQVnYKEbUJTlJ2hGiSoyxQg_RTNCuMhKIotzdBHjlpB0U3yG1pV23lmje7zGBvoeBzAwjD7g1pt36zbYOzykjW3h5-v7ZVVhGzHECG60KdUlckpGu3G6T5FLdNbpPsLVNOfo7eF-Xa2y59fHp-ruOTOcsDHjUgqqC0pLRopcaqkocC5zIB1TTaFkbgQvTSlZq1TRtKIUSpq2NU1HSk04n6Pb498h-I89xLHe2Xiooh34faxZwaXIBc1FQm_-oVu_D6nuHyXKXAqpErU8Uib4GAN09RDsTofPmpL6YLmeLNeTZf4LVh5xTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536847679</pqid></control><display><type>article</type><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><source>American Association for the Advancement of Science</source><creator>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</creator><creatorcontrib>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</creatorcontrib><description>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie et al. tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet. Science , abe9124, this issue p. eabe9124 ; see also abj2937, p. 1038 The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules. T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17 + TCRs from the naïve mouse CD8 + T cell repertoire that recognizes the H-2D b –NP 366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe9124</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Affinity ; Antigens ; Autoantigens ; Binding ; CD3 antigen ; CD4 antigen ; CD8 antigen ; Cell activation ; Clustering ; Complementarity ; Cross-reactivity ; Docking ; Energy transfer ; Epitopes ; Fluorescence ; Fluorescence resonance energy transfer ; Histocompatibility antigen H-2 ; Immune response ; Immune system ; In vivo methods and tests ; Influenza ; Influenza A ; Lck protein ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Peptides ; Polarity ; Receptors ; Recognition ; Recruitment ; Signal transduction ; Signaling ; T cell receptors ; Thymus ; Topology ; Viruses</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6546)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</citedby><cites>FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</cites><orcidid>0000-0001-5358-9363 ; 0000-0001-6383-3032 ; 0000-0003-3784-5210 ; 0000-0002-8555-834X ; 0000-0003-1610-515X ; 0000-0002-6278-7211 ; 0000-0002-6684-7904 ; 0000-0001-9980-4225 ; 0000-0001-7424-2123 ; 0000-0001-7416-038X ; 0000-0002-2020-7522 ; 0000-0001-6000-2305 ; 0000-0002-0521-6674 ; 0000-0002-3561-3494 ; 0000-0002-7154-369X ; 0000-0003-3138-0037 ; 0000-0002-2045-6342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids></links><search><creatorcontrib>Zareie, Pirooz</creatorcontrib><creatorcontrib>Szeto, Christopher</creatorcontrib><creatorcontrib>Farenc, Carine</creatorcontrib><creatorcontrib>Gunasinghe, Sachith D.</creatorcontrib><creatorcontrib>Kolawole, Elizabeth M.</creatorcontrib><creatorcontrib>Nguyen, Angela</creatorcontrib><creatorcontrib>Blyth, Chantelle</creatorcontrib><creatorcontrib>Sng, Xavier Y. X.</creatorcontrib><creatorcontrib>Li, Jasmine</creatorcontrib><creatorcontrib>Jones, Claerwen M.</creatorcontrib><creatorcontrib>Fulcher, Alex J.</creatorcontrib><creatorcontrib>Jacobs, Jesica R.</creatorcontrib><creatorcontrib>Wei, Qianru</creatorcontrib><creatorcontrib>Wojciech, Lukasz</creatorcontrib><creatorcontrib>Petersen, Jan</creatorcontrib><creatorcontrib>Gascoigne, Nicholas R.J.</creatorcontrib><creatorcontrib>Evavold, Brian D.</creatorcontrib><creatorcontrib>Gaus, Katharina</creatorcontrib><creatorcontrib>Gras, Stephanie</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>La Gruta, Nicole L.</creatorcontrib><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><title>Science (American Association for the Advancement of Science)</title><description>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie et al. tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet. Science , abe9124, this issue p. eabe9124 ; see also abj2937, p. 1038 The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules. T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17 + TCRs from the naïve mouse CD8 + T cell repertoire that recognizes the H-2D b –NP 366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</description><subject>Affinity</subject><subject>Antigens</subject><subject>Autoantigens</subject><subject>Binding</subject><subject>CD3 antigen</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Clustering</subject><subject>Complementarity</subject><subject>Cross-reactivity</subject><subject>Docking</subject><subject>Energy transfer</subject><subject>Epitopes</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Histocompatibility antigen H-2</subject><subject>Immune response</subject><subject>Immune system</subject><subject>In vivo methods and tests</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Lck protein</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Peptides</subject><subject>Polarity</subject><subject>Receptors</subject><subject>Recognition</subject><subject>Recruitment</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>T cell receptors</subject><subject>Thymus</subject><subject>Topology</subject><subject>Viruses</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAURi0EEqUws1piYUnrn8SORxQBRQKxlDlynJvKJbWDnQ5svANvyJPg0kxMV7r3fFefDkLXlCwoZWIZjQVnYKEbUJTlJ2hGiSoyxQg_RTNCuMhKIotzdBHjlpB0U3yG1pV23lmje7zGBvoeBzAwjD7g1pt36zbYOzykjW3h5-v7ZVVhGzHECG60KdUlckpGu3G6T5FLdNbpPsLVNOfo7eF-Xa2y59fHp-ruOTOcsDHjUgqqC0pLRopcaqkocC5zIB1TTaFkbgQvTSlZq1TRtKIUSpq2NU1HSk04n6Pb498h-I89xLHe2Xiooh34faxZwaXIBc1FQm_-oVu_D6nuHyXKXAqpErU8Uib4GAN09RDsTofPmpL6YLmeLNeTZf4LVh5xTw</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Zareie, Pirooz</creator><creator>Szeto, Christopher</creator><creator>Farenc, Carine</creator><creator>Gunasinghe, Sachith D.</creator><creator>Kolawole, Elizabeth M.</creator><creator>Nguyen, Angela</creator><creator>Blyth, Chantelle</creator><creator>Sng, Xavier Y. X.</creator><creator>Li, Jasmine</creator><creator>Jones, Claerwen M.</creator><creator>Fulcher, Alex J.</creator><creator>Jacobs, Jesica R.</creator><creator>Wei, Qianru</creator><creator>Wojciech, Lukasz</creator><creator>Petersen, Jan</creator><creator>Gascoigne, Nicholas R.J.</creator><creator>Evavold, Brian D.</creator><creator>Gaus, Katharina</creator><creator>Gras, Stephanie</creator><creator>Rossjohn, Jamie</creator><creator>La Gruta, Nicole L.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5358-9363</orcidid><orcidid>https://orcid.org/0000-0001-6383-3032</orcidid><orcidid>https://orcid.org/0000-0003-3784-5210</orcidid><orcidid>https://orcid.org/0000-0002-8555-834X</orcidid><orcidid>https://orcid.org/0000-0003-1610-515X</orcidid><orcidid>https://orcid.org/0000-0002-6278-7211</orcidid><orcidid>https://orcid.org/0000-0002-6684-7904</orcidid><orcidid>https://orcid.org/0000-0001-9980-4225</orcidid><orcidid>https://orcid.org/0000-0001-7424-2123</orcidid><orcidid>https://orcid.org/0000-0001-7416-038X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-6000-2305</orcidid><orcidid>https://orcid.org/0000-0002-0521-6674</orcidid><orcidid>https://orcid.org/0000-0002-3561-3494</orcidid><orcidid>https://orcid.org/0000-0002-7154-369X</orcidid><orcidid>https://orcid.org/0000-0003-3138-0037</orcidid><orcidid>https://orcid.org/0000-0002-2045-6342</orcidid></search><sort><creationdate>20210604</creationdate><title>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</title><author>Zareie, Pirooz ; Szeto, Christopher ; Farenc, Carine ; Gunasinghe, Sachith D. ; Kolawole, Elizabeth M. ; Nguyen, Angela ; Blyth, Chantelle ; Sng, Xavier Y. X. ; Li, Jasmine ; Jones, Claerwen M. ; Fulcher, Alex J. ; Jacobs, Jesica R. ; Wei, Qianru ; Wojciech, Lukasz ; Petersen, Jan ; Gascoigne, Nicholas R.J. ; Evavold, Brian D. ; Gaus, Katharina ; Gras, Stephanie ; Rossjohn, Jamie ; La Gruta, Nicole L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-37761a511820547a791e3374e0f29b5974c638c872d995bd68697cddcbf08a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Antigens</topic><topic>Autoantigens</topic><topic>Binding</topic><topic>CD3 antigen</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Clustering</topic><topic>Complementarity</topic><topic>Cross-reactivity</topic><topic>Docking</topic><topic>Energy transfer</topic><topic>Epitopes</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Histocompatibility antigen H-2</topic><topic>Immune response</topic><topic>Immune system</topic><topic>In vivo methods and tests</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Lck protein</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Peptides</topic><topic>Polarity</topic><topic>Receptors</topic><topic>Recognition</topic><topic>Recruitment</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>T cell receptors</topic><topic>Thymus</topic><topic>Topology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zareie, Pirooz</creatorcontrib><creatorcontrib>Szeto, Christopher</creatorcontrib><creatorcontrib>Farenc, Carine</creatorcontrib><creatorcontrib>Gunasinghe, Sachith D.</creatorcontrib><creatorcontrib>Kolawole, Elizabeth M.</creatorcontrib><creatorcontrib>Nguyen, Angela</creatorcontrib><creatorcontrib>Blyth, Chantelle</creatorcontrib><creatorcontrib>Sng, Xavier Y. X.</creatorcontrib><creatorcontrib>Li, Jasmine</creatorcontrib><creatorcontrib>Jones, Claerwen M.</creatorcontrib><creatorcontrib>Fulcher, Alex J.</creatorcontrib><creatorcontrib>Jacobs, Jesica R.</creatorcontrib><creatorcontrib>Wei, Qianru</creatorcontrib><creatorcontrib>Wojciech, Lukasz</creatorcontrib><creatorcontrib>Petersen, Jan</creatorcontrib><creatorcontrib>Gascoigne, Nicholas R.J.</creatorcontrib><creatorcontrib>Evavold, Brian D.</creatorcontrib><creatorcontrib>Gaus, Katharina</creatorcontrib><creatorcontrib>Gras, Stephanie</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>La Gruta, Nicole L.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zareie, Pirooz</au><au>Szeto, Christopher</au><au>Farenc, Carine</au><au>Gunasinghe, Sachith D.</au><au>Kolawole, Elizabeth M.</au><au>Nguyen, Angela</au><au>Blyth, Chantelle</au><au>Sng, Xavier Y. X.</au><au>Li, Jasmine</au><au>Jones, Claerwen M.</au><au>Fulcher, Alex J.</au><au>Jacobs, Jesica R.</au><au>Wei, Qianru</au><au>Wojciech, Lukasz</au><au>Petersen, Jan</au><au>Gascoigne, Nicholas R.J.</au><au>Evavold, Brian D.</au><au>Gaus, Katharina</au><au>Gras, Stephanie</au><au>Rossjohn, Jamie</au><au>La Gruta, Nicole L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-06-04</date><risdate>2021</risdate><volume>372</volume><issue>6546</issue><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Most T cells use a T cell receptor (TCR) that recognizes major histocompatibility complex molecules bound to peptides (pMHCs) derived from both self- and foreign antigens. Although there is great variability in the interface because of the diversity of both partners, this interaction displays a canonical docking topology for reasons that remain contested. Zareie et al. tested an assortment of both canonical and reversed-polarity TCRs that were all specific for the same cognate pMHC-I bearing a peptide derived from influenza A virus (IAV) (see the Perspective by Horkova and Stepanek). The authors determined that docking topology was the primary driver of in vivo T cell activation and recruitment when mice were infected with IAV. The canonical topology was required for the formation of a functional signaling complex, suggesting that T cell signaling constraints dictate how TCR and pMHC meet. Science , abe9124, this issue p. eabe9124 ; see also abj2937, p. 1038 The highly conserved nature of T cell antigen receptor recognition is required for the colocalization of key signaling molecules. T cell receptor (TCR) recognition of peptide–major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using “reversed-docking” TCRβ-variable (TRBV) 17 + TCRs from the naïve mouse CD8 + T cell repertoire that recognizes the H-2D b –NP 366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR–pMHCI binding or clustering characteristics. Canonical TCR–pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR–pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR–pMHC docking topology is mandated by T cell signaling constraints.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abe9124</doi><orcidid>https://orcid.org/0000-0001-5358-9363</orcidid><orcidid>https://orcid.org/0000-0001-6383-3032</orcidid><orcidid>https://orcid.org/0000-0003-3784-5210</orcidid><orcidid>https://orcid.org/0000-0002-8555-834X</orcidid><orcidid>https://orcid.org/0000-0003-1610-515X</orcidid><orcidid>https://orcid.org/0000-0002-6278-7211</orcidid><orcidid>https://orcid.org/0000-0002-6684-7904</orcidid><orcidid>https://orcid.org/0000-0001-9980-4225</orcidid><orcidid>https://orcid.org/0000-0001-7424-2123</orcidid><orcidid>https://orcid.org/0000-0001-7416-038X</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-6000-2305</orcidid><orcidid>https://orcid.org/0000-0002-0521-6674</orcidid><orcidid>https://orcid.org/0000-0002-3561-3494</orcidid><orcidid>https://orcid.org/0000-0002-7154-369X</orcidid><orcidid>https://orcid.org/0000-0003-3138-0037</orcidid><orcidid>https://orcid.org/0000-0002-2045-6342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6546)
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2537646146
source American Association for the Advancement of Science
subjects Affinity
Antigens
Autoantigens
Binding
CD3 antigen
CD4 antigen
CD8 antigen
Cell activation
Clustering
Complementarity
Cross-reactivity
Docking
Energy transfer
Epitopes
Fluorescence
Fluorescence resonance energy transfer
Histocompatibility antigen H-2
Immune response
Immune system
In vivo methods and tests
Influenza
Influenza A
Lck protein
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Peptides
Polarity
Receptors
Recognition
Recruitment
Signal transduction
Signaling
T cell receptors
Thymus
Topology
Viruses
title Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20T%20cell%20receptor%20docking%20on%20peptide%E2%80%93MHC%20is%20essential%20for%20T%20cell%20signaling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zareie,%20Pirooz&rft.date=2021-06-04&rft.volume=372&rft.issue=6546&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe9124&rft_dat=%3Cproquest_cross%3E2536847679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536847679&rft_id=info:pmid/&rfr_iscdi=true