Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach
In this paper, we present a personalized deep learning approach to estimate blood pressure (BP) using the photoplethysmogram (PPG) signal. We propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully connected layers that operates directly on the raw PPG time ser...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-01, Vol.26 (1), p.218-228 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 218 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Leitner, Jared Chiang, Po-Han Dey, Sujit |
description | In this paper, we present a personalized deep learning approach to estimate blood pressure (BP) using the photoplethysmogram (PPG) signal. We propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully connected layers that operates directly on the raw PPG time series and provides BP estimation every 5 seconds. To address the problem of limited personal PPG and BP data for individuals, we propose a transfer learning technique that personalizes specific layers of a network pre-trained with abundant data from other patients. We use the MIMIC III database which contains PPG and continuous BP data measured invasively via an arterial catheter to develop and analyze our approach. Our transfer learning technique, namely BP-CRNN-Transfer, achieves a mean absolute error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, respectively, outperforming existing methods. Our approach satisfies both the BHS and AAMI blood pressure measurement standards for SBP and DBP. Moreover, our results demonstrate that as little as 50 data samples per person are required to train accurate personalized models. We carry out Bland-Altman and correlation analysis to compare our method to the invasive arterial catheter, which is the gold-standard BP measurement method. |
doi_str_mv | 10.1109/JBHI.2021.3085526 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536800702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9445687</ieee_id><sourcerecordid>2621066248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-fbd94158145ff7d8d6575f280425ddc7e6e47a169cc59184dbb337fe02b7e93b3</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEAgT7AQgJVeLCZSPfSbltiI-hSewA5yhtXFbUNSVpD-PXk2mDA77Ysh_b0vsidEHwhBCc377MnucTiimZMKyFoPIAnVIi9ZhSrA9_a5LzEzSK8ROn0KmVy2N0wjhWiil9iswSQvStbepvcNms8d5lywAxDgGyh9jXa9vXvs3eY91-ZMuV733XQL_axLX_CLZbbe6yafYWbBsrCNkCbGi35LTrgrfl6hwdVbaJMNrnM_T--PB2_zxevD7N76eLccmJ6MdV4fJUaMJFVSmnnRRKVFRjToVzpQIJXFki87IUOdHcFQVjqgJMCwU5K9gZutndTW-_Boi9WdexhKaxLfghGiqY1BgrTBN6_Q_99ENIEiRKUoKlpFwniuyoMvgYA1SmC0mMsDEEm60BZmuA2Rpg9gaknav95aFYg_vb-JU7AZc7oAaAv3HOuZBasR_s_ImK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066248</pqid></control><display><type>article</type><title>Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Leitner, Jared ; Chiang, Po-Han ; Dey, Sujit</creator><creatorcontrib>Leitner, Jared ; Chiang, Po-Han ; Dey, Sujit</creatorcontrib><description>In this paper, we present a personalized deep learning approach to estimate blood pressure (BP) using the photoplethysmogram (PPG) signal. We propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully connected layers that operates directly on the raw PPG time series and provides BP estimation every 5 seconds. To address the problem of limited personal PPG and BP data for individuals, we propose a transfer learning technique that personalizes specific layers of a network pre-trained with abundant data from other patients. We use the MIMIC III database which contains PPG and continuous BP data measured invasively via an arterial catheter to develop and analyze our approach. Our transfer learning technique, namely BP-CRNN-Transfer, achieves a mean absolute error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, respectively, outperforming existing methods. Our approach satisfies both the BHS and AAMI blood pressure measurement standards for SBP and DBP. Moreover, our results demonstrate that as little as 50 data samples per person are required to train accurate personalized models. We carry out Bland-Altman and correlation analysis to compare our method to the invasive arterial catheter, which is the gold-standard BP measurement method.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3085526</identifier><identifier>PMID: 34077378</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical measurement ; Blood Pressure ; Blood Pressure Determination ; Catheters ; Computer architecture ; Convolution ; Correlation ; Correlation analysis ; Customization ; Deep learning ; Estimation ; Feature extraction ; Humans ; Machine Learning ; Measurement methods ; Medical instruments ; Neural networks ; Neural Networks, Computer ; photoplethysmogram ; Photoplethysmography ; Pressure measurement ; Transfer learning ; wearables</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-01, Vol.26 (1), p.218-228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-fbd94158145ff7d8d6575f280425ddc7e6e47a169cc59184dbb337fe02b7e93b3</citedby><cites>FETCH-LOGICAL-c415t-fbd94158145ff7d8d6575f280425ddc7e6e47a169cc59184dbb337fe02b7e93b3</cites><orcidid>0000-0001-6652-3240 ; 0000-0002-1584-7496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9445687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9445687$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34077378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leitner, Jared</creatorcontrib><creatorcontrib>Chiang, Po-Han</creatorcontrib><creatorcontrib>Dey, Sujit</creatorcontrib><title>Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, we present a personalized deep learning approach to estimate blood pressure (BP) using the photoplethysmogram (PPG) signal. We propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully connected layers that operates directly on the raw PPG time series and provides BP estimation every 5 seconds. To address the problem of limited personal PPG and BP data for individuals, we propose a transfer learning technique that personalizes specific layers of a network pre-trained with abundant data from other patients. We use the MIMIC III database which contains PPG and continuous BP data measured invasively via an arterial catheter to develop and analyze our approach. Our transfer learning technique, namely BP-CRNN-Transfer, achieves a mean absolute error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, respectively, outperforming existing methods. Our approach satisfies both the BHS and AAMI blood pressure measurement standards for SBP and DBP. Moreover, our results demonstrate that as little as 50 data samples per person are required to train accurate personalized models. We carry out Bland-Altman and correlation analysis to compare our method to the invasive arterial catheter, which is the gold-standard BP measurement method.</description><subject>Biomedical measurement</subject><subject>Blood Pressure</subject><subject>Blood Pressure Determination</subject><subject>Catheters</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Measurement methods</subject><subject>Medical instruments</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>photoplethysmogram</subject><subject>Photoplethysmography</subject><subject>Pressure measurement</subject><subject>Transfer learning</subject><subject>wearables</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1PwzAMhiMEAgT7AQgJVeLCZSPfSbltiI-hSewA5yhtXFbUNSVpD-PXk2mDA77Ysh_b0vsidEHwhBCc377MnucTiimZMKyFoPIAnVIi9ZhSrA9_a5LzEzSK8ROn0KmVy2N0wjhWiil9iswSQvStbepvcNms8d5lywAxDgGyh9jXa9vXvs3eY91-ZMuV733XQL_axLX_CLZbbe6yafYWbBsrCNkCbGi35LTrgrfl6hwdVbaJMNrnM_T--PB2_zxevD7N76eLccmJ6MdV4fJUaMJFVSmnnRRKVFRjToVzpQIJXFki87IUOdHcFQVjqgJMCwU5K9gZutndTW-_Boi9WdexhKaxLfghGiqY1BgrTBN6_Q_99ENIEiRKUoKlpFwniuyoMvgYA1SmC0mMsDEEm60BZmuA2Rpg9gaknav95aFYg_vb-JU7AZc7oAaAv3HOuZBasR_s_ImK</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Leitner, Jared</creator><creator>Chiang, Po-Han</creator><creator>Dey, Sujit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6652-3240</orcidid><orcidid>https://orcid.org/0000-0002-1584-7496</orcidid></search><sort><creationdate>202201</creationdate><title>Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach</title><author>Leitner, Jared ; Chiang, Po-Han ; Dey, Sujit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-fbd94158145ff7d8d6575f280425ddc7e6e47a169cc59184dbb337fe02b7e93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical measurement</topic><topic>Blood Pressure</topic><topic>Blood Pressure Determination</topic><topic>Catheters</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Measurement methods</topic><topic>Medical instruments</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>photoplethysmogram</topic><topic>Photoplethysmography</topic><topic>Pressure measurement</topic><topic>Transfer learning</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitner, Jared</creatorcontrib><creatorcontrib>Chiang, Po-Han</creatorcontrib><creatorcontrib>Dey, Sujit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leitner, Jared</au><au>Chiang, Po-Han</au><au>Dey, Sujit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-01</date><risdate>2022</risdate><volume>26</volume><issue>1</issue><spage>218</spage><epage>228</epage><pages>218-228</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, we present a personalized deep learning approach to estimate blood pressure (BP) using the photoplethysmogram (PPG) signal. We propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully connected layers that operates directly on the raw PPG time series and provides BP estimation every 5 seconds. To address the problem of limited personal PPG and BP data for individuals, we propose a transfer learning technique that personalizes specific layers of a network pre-trained with abundant data from other patients. We use the MIMIC III database which contains PPG and continuous BP data measured invasively via an arterial catheter to develop and analyze our approach. Our transfer learning technique, namely BP-CRNN-Transfer, achieves a mean absolute error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, respectively, outperforming existing methods. Our approach satisfies both the BHS and AAMI blood pressure measurement standards for SBP and DBP. Moreover, our results demonstrate that as little as 50 data samples per person are required to train accurate personalized models. We carry out Bland-Altman and correlation analysis to compare our method to the invasive arterial catheter, which is the gold-standard BP measurement method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34077378</pmid><doi>10.1109/JBHI.2021.3085526</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6652-3240</orcidid><orcidid>https://orcid.org/0000-0002-1584-7496</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-01, Vol.26 (1), p.218-228 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_2536800702 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical measurement Blood Pressure Blood Pressure Determination Catheters Computer architecture Convolution Correlation Correlation analysis Customization Deep learning Estimation Feature extraction Humans Machine Learning Measurement methods Medical instruments Neural networks Neural Networks, Computer photoplethysmogram Photoplethysmography Pressure measurement Transfer learning wearables |
title | Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Blood%20Pressure%20Estimation%20Using%20Photoplethysmography:%20A%20Transfer%20Learning%20Approach&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Leitner,%20Jared&rft.date=2022-01&rft.volume=26&rft.issue=1&rft.spage=218&rft.epage=228&rft.pages=218-228&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3085526&rft_dat=%3Cproquest_RIE%3E2621066248%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066248&rft_id=info:pmid/34077378&rft_ieee_id=9445687&rfr_iscdi=true |