Studying Reaction Mechanisms in Solution Using a Distributed Electron Microscopy Method
Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions....
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-06, Vol.15 (6), p.10296-10308 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions. The method combines information from multiple stages of the reaction and from multiple EM methods, including liquid phase EM (LP-EM), cryogenic EM (cryo-EM), and cryo-electron tomography (cryo-ET). We demonstrate this method by studying the desilication mechanism of zeolite crystals. Collectively, our data reveal that the reaction proceeds via a two-step anisotropic etching process and that the defects in curved surfaces and between the subunits in the crystal control the desilication kinetics by directing mass transport. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c02461 |