A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance

Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2021-06, Vol.40 (25), p.4291-4306
Hauptverfasser: Liao, Yuning, Liu, Yuan, Shao, Zhenlong, Xia, Xiaohong, Deng, Yuanfei, Cai, Jianyu, Yao, Leyi, He, Jinchan, Yu, Cuifu, Hu, Tumei, Sun, Wenshuang, Liu, Fang, Tang, Daolin, Liu, Jinbao, Huang, Hongbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4306
container_issue 25
container_start_page 4291
container_title Oncogene
container_volume 40
creator Liao, Yuning
Liu, Yuan
Shao, Zhenlong
Xia, Xiaohong
Deng, Yuanfei
Cai, Jianyu
Yao, Leyi
He, Jinchan
Yu, Cuifu
Hu, Tumei
Sun, Wenshuang
Liu, Fang
Tang, Daolin
Liu, Jinbao
Huang, Hongbiao
description Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.
doi_str_mv 10.1038/s41388-021-01851-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536798774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666408969</galeid><sourcerecordid>A666408969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c30017d408cf31cf8a1af3ae9d06ead7cd57efc8ef1fc80665b465d0cbaa3eb03</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoMo9lj9A17IgjfebJ1sPnb38lC0Fgot1oJ3ISeZHFJ2s8dkjx__3llPtVREApNk8szwTl7GXnI44SC6t0Vy0XU1NLwG3imKj9iKy1bXSvXyMVtBr6DuG9EcsWel3AJA20PzlB0JuZx6WLG0rhJ-q_I0YDWF6uzjVavqm-srXl-ff-bVLk8zxlS5adwN-L2io8_xa0zb5anMdsbK2eQwL_dtxlLilCqbPKXLnO28XCkdiSXsOXsS7FDwxd1-zG7ev_t0-qG-uDw7P11f1E7KZq6dAOCtl9C5ILgLneU2CIu9B43Wt86rFoPrMHCKoLXaSK08uI21AjcgjtmbQ19S9WWPZTZjLA6HwSac9sU0Sui279pWEvr6L_R22udE6oiSUusGBNxTWzugiSlMNJxbmpq11pqU9ron6uQfFC2PY3RTwhAp_6CgORQ4-s2SMZhdjqPNPwwHs5hsDiYbMtn8MtksWl7dKd5vRvR_Sn67SoA4AIWe0hbz_Uj_afsTjq6w4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544662030</pqid></control><display><type>article</type><title>A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Liao, Yuning ; Liu, Yuan ; Shao, Zhenlong ; Xia, Xiaohong ; Deng, Yuanfei ; Cai, Jianyu ; Yao, Leyi ; He, Jinchan ; Yu, Cuifu ; Hu, Tumei ; Sun, Wenshuang ; Liu, Fang ; Tang, Daolin ; Liu, Jinbao ; Huang, Hongbiao</creator><creatorcontrib>Liao, Yuning ; Liu, Yuan ; Shao, Zhenlong ; Xia, Xiaohong ; Deng, Yuanfei ; Cai, Jianyu ; Yao, Leyi ; He, Jinchan ; Yu, Cuifu ; Hu, Tumei ; Sun, Wenshuang ; Liu, Fang ; Tang, Daolin ; Liu, Jinbao ; Huang, Hongbiao</creatorcontrib><description>Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-01851-0</identifier><identifier>PMID: 34079090</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/2 ; 13/31 ; 13/51 ; 13/89 ; 14/35 ; 42/109 ; 631/67/1059/602 ; 631/67/589/466 ; 82/80 ; Animal models ; Animals ; Antitumor activity ; Apoptosis ; C-Terminus ; Castration ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation - genetics ; Development and progression ; Disease Progression ; Drug resistance ; Embryogenesis ; Gene Expression Regulation, Neoplastic - genetics ; Genetic aspects ; Health aspects ; HEK293 Cells ; Homeodomain Proteins - genetics ; HSP70 Heat-Shock Proteins - genetics ; Human Genetics ; Humans ; Internal Medicine ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mitochondrial Proteins - genetics ; Oncology ; PC-3 Cells ; Pheochromocytoma cells ; Prostate - pathology ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - genetics ; Prostatic Neoplasms, Castration-Resistant - pathology ; Proteins ; Proteolysis ; Receptors, Androgen - genetics ; Signal Transduction - genetics ; SIX gene family ; Transcription factors ; Transcription Factors - genetics ; Ubiquitin-Specific Proteases - genetics ; Ubiquitination - genetics ; Xenografts</subject><ispartof>Oncogene, 2021-06, Vol.40 (25), p.4291-4306</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c30017d408cf31cf8a1af3ae9d06ead7cd57efc8ef1fc80665b465d0cbaa3eb03</citedby><cites>FETCH-LOGICAL-c442t-c30017d408cf31cf8a1af3ae9d06ead7cd57efc8ef1fc80665b465d0cbaa3eb03</cites><orcidid>0000-0003-0343-1933 ; 0000-0002-1903-6180 ; 0000-0002-9873-0559 ; 0000-0003-2220-2407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-021-01851-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-021-01851-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34079090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Yuning</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Shao, Zhenlong</creatorcontrib><creatorcontrib>Xia, Xiaohong</creatorcontrib><creatorcontrib>Deng, Yuanfei</creatorcontrib><creatorcontrib>Cai, Jianyu</creatorcontrib><creatorcontrib>Yao, Leyi</creatorcontrib><creatorcontrib>He, Jinchan</creatorcontrib><creatorcontrib>Yu, Cuifu</creatorcontrib><creatorcontrib>Hu, Tumei</creatorcontrib><creatorcontrib>Sun, Wenshuang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Tang, Daolin</creatorcontrib><creatorcontrib>Liu, Jinbao</creatorcontrib><creatorcontrib>Huang, Hongbiao</creatorcontrib><title>A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.</description><subject>13/1</subject><subject>13/2</subject><subject>13/31</subject><subject>13/51</subject><subject>13/89</subject><subject>14/35</subject><subject>42/109</subject><subject>631/67/1059/602</subject><subject>631/67/589/466</subject><subject>82/80</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>C-Terminus</subject><subject>Castration</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Development and progression</subject><subject>Disease Progression</subject><subject>Drug resistance</subject><subject>Embryogenesis</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Homeodomain Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Oncology</subject><subject>PC-3 Cells</subject><subject>Pheochromocytoma cells</subject><subject>Prostate - pathology</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - genetics</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Receptors, Androgen - genetics</subject><subject>Signal Transduction - genetics</subject><subject>SIX gene family</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Ubiquitin-Specific Proteases - genetics</subject><subject>Ubiquitination - genetics</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV1rFTEQhoMo9lj9A17IgjfebJ1sPnb38lC0Fgot1oJ3ISeZHFJ2s8dkjx__3llPtVREApNk8szwTl7GXnI44SC6t0Vy0XU1NLwG3imKj9iKy1bXSvXyMVtBr6DuG9EcsWel3AJA20PzlB0JuZx6WLG0rhJ-q_I0YDWF6uzjVavqm-srXl-ff-bVLk8zxlS5adwN-L2io8_xa0zb5anMdsbK2eQwL_dtxlLilCqbPKXLnO28XCkdiSXsOXsS7FDwxd1-zG7ev_t0-qG-uDw7P11f1E7KZq6dAOCtl9C5ILgLneU2CIu9B43Wt86rFoPrMHCKoLXaSK08uI21AjcgjtmbQ19S9WWPZTZjLA6HwSac9sU0Sui279pWEvr6L_R22udE6oiSUusGBNxTWzugiSlMNJxbmpq11pqU9ron6uQfFC2PY3RTwhAp_6CgORQ4-s2SMZhdjqPNPwwHs5hsDiYbMtn8MtksWl7dKd5vRvR_Sn67SoA4AIWe0hbz_Uj_afsTjq6w4A</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Liao, Yuning</creator><creator>Liu, Yuan</creator><creator>Shao, Zhenlong</creator><creator>Xia, Xiaohong</creator><creator>Deng, Yuanfei</creator><creator>Cai, Jianyu</creator><creator>Yao, Leyi</creator><creator>He, Jinchan</creator><creator>Yu, Cuifu</creator><creator>Hu, Tumei</creator><creator>Sun, Wenshuang</creator><creator>Liu, Fang</creator><creator>Tang, Daolin</creator><creator>Liu, Jinbao</creator><creator>Huang, Hongbiao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0343-1933</orcidid><orcidid>https://orcid.org/0000-0002-1903-6180</orcidid><orcidid>https://orcid.org/0000-0002-9873-0559</orcidid><orcidid>https://orcid.org/0000-0003-2220-2407</orcidid></search><sort><creationdate>20210624</creationdate><title>A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance</title><author>Liao, Yuning ; Liu, Yuan ; Shao, Zhenlong ; Xia, Xiaohong ; Deng, Yuanfei ; Cai, Jianyu ; Yao, Leyi ; He, Jinchan ; Yu, Cuifu ; Hu, Tumei ; Sun, Wenshuang ; Liu, Fang ; Tang, Daolin ; Liu, Jinbao ; Huang, Hongbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c30017d408cf31cf8a1af3ae9d06ead7cd57efc8ef1fc80665b465d0cbaa3eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/31</topic><topic>13/51</topic><topic>13/89</topic><topic>14/35</topic><topic>42/109</topic><topic>631/67/1059/602</topic><topic>631/67/589/466</topic><topic>82/80</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>C-Terminus</topic><topic>Castration</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Development and progression</topic><topic>Disease Progression</topic><topic>Drug resistance</topic><topic>Embryogenesis</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Homeodomain Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Oncology</topic><topic>PC-3 Cells</topic><topic>Pheochromocytoma cells</topic><topic>Prostate - pathology</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - genetics</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Receptors, Androgen - genetics</topic><topic>Signal Transduction - genetics</topic><topic>SIX gene family</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Ubiquitin-Specific Proteases - genetics</topic><topic>Ubiquitination - genetics</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Yuning</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Shao, Zhenlong</creatorcontrib><creatorcontrib>Xia, Xiaohong</creatorcontrib><creatorcontrib>Deng, Yuanfei</creatorcontrib><creatorcontrib>Cai, Jianyu</creatorcontrib><creatorcontrib>Yao, Leyi</creatorcontrib><creatorcontrib>He, Jinchan</creatorcontrib><creatorcontrib>Yu, Cuifu</creatorcontrib><creatorcontrib>Hu, Tumei</creatorcontrib><creatorcontrib>Sun, Wenshuang</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Tang, Daolin</creatorcontrib><creatorcontrib>Liu, Jinbao</creatorcontrib><creatorcontrib>Huang, Hongbiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Yuning</au><au>Liu, Yuan</au><au>Shao, Zhenlong</au><au>Xia, Xiaohong</au><au>Deng, Yuanfei</au><au>Cai, Jianyu</au><au>Yao, Leyi</au><au>He, Jinchan</au><au>Yu, Cuifu</au><au>Hu, Tumei</au><au>Sun, Wenshuang</au><au>Liu, Fang</au><au>Tang, Daolin</au><au>Liu, Jinbao</au><au>Huang, Hongbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-06-24</date><risdate>2021</risdate><volume>40</volume><issue>25</issue><spage>4291</spage><epage>4306</epage><pages>4291-4306</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34079090</pmid><doi>10.1038/s41388-021-01851-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0343-1933</orcidid><orcidid>https://orcid.org/0000-0002-1903-6180</orcidid><orcidid>https://orcid.org/0000-0002-9873-0559</orcidid><orcidid>https://orcid.org/0000-0003-2220-2407</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2021-06, Vol.40 (25), p.4291-4306
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_2536798774
source MEDLINE; SpringerLink Journals
subjects 13/1
13/2
13/31
13/51
13/89
14/35
42/109
631/67/1059/602
631/67/589/466
82/80
Animal models
Animals
Antitumor activity
Apoptosis
C-Terminus
Castration
Cell Biology
Cell Line, Tumor
Cell Proliferation - genetics
Development and progression
Disease Progression
Drug resistance
Embryogenesis
Gene Expression Regulation, Neoplastic - genetics
Genetic aspects
Health aspects
HEK293 Cells
Homeodomain Proteins - genetics
HSP70 Heat-Shock Proteins - genetics
Human Genetics
Humans
Internal Medicine
Male
Medicine
Medicine & Public Health
Mice
Mice, Inbred BALB C
Mice, Nude
Mitochondrial Proteins - genetics
Oncology
PC-3 Cells
Pheochromocytoma cells
Prostate - pathology
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - genetics
Prostatic Neoplasms, Castration-Resistant - pathology
Proteins
Proteolysis
Receptors, Androgen - genetics
Signal Transduction - genetics
SIX gene family
Transcription factors
Transcription Factors - genetics
Ubiquitin-Specific Proteases - genetics
Ubiquitination - genetics
Xenografts
title A new role of GRP75-USP1-SIX1 protein complex in driving prostate cancer progression and castration resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20role%20of%20GRP75-USP1-SIX1%20protein%20complex%20in%20driving%20prostate%20cancer%20progression%20and%20castration%20resistance&rft.jtitle=Oncogene&rft.au=Liao,%20Yuning&rft.date=2021-06-24&rft.volume=40&rft.issue=25&rft.spage=4291&rft.epage=4306&rft.pages=4291-4306&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-01851-0&rft_dat=%3Cgale_proqu%3EA666408969%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544662030&rft_id=info:pmid/34079090&rft_galeid=A666408969&rfr_iscdi=true