Heralded entanglement distribution between two absorptive quantum memories
Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground 1 . Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping 2 . As the elementary link of a quantum repea...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-06, Vol.594 (7861), p.41-45 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 7861 |
container_start_page | 41 |
container_title | Nature (London) |
container_volume | 594 |
creator | Liu, Xiao Hu, Jun Li, Zong-Feng Li, Xue Li, Pei-Yun Liang, Peng-Jun Zhou, Zong-Quan Li, Chuan-Feng Guo, Guang-Can |
description | Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground
1
. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping
2
. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories
3
–
9
. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.
Heralded entanglement is realized between two solid-state absorptive quantum memories 3.5 metres apart and with a bandwidth of 1 gigahertz, and with a fidelity of approximately 80%. |
doi_str_mv | 10.1038/s41586-021-03505-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536797776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2537714118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-abe90012e8bcc54f7e8049e09cc059f3d829dc4b4314e4af228d4ef42dee7183</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIlOvuV3RylqFUKXnpfNsmkpOSj3d1Y_PemHyp48DQD88w7w0PINYV7Clw_eEGlTmJgNAYuQcb8hIypUEksEq1OyRiA6Rg0T0bkwvsVAEiqxDkZcQEqpTwdk7cZOlsXWETYBtsua2yGJioqH1yV9aHq2ijDsEVso7DtIpv5zq1D9YHRprdt6JuowaZzFfpLclba2uPVsU7I4vlpMZ3F8_eX1-njPM65kiG2GaYAlKHO8lyKUqEGkSKkeQ4yLXmhWVrkIhOcChS2ZEwXAkvBCkRFNZ-Qu0Ps2nWbHn0wTeVzrGvbYtd7wyRPVKqUSgb09g-66nrXDs_tKKWooPtAdqBy13nvsDRrVzXWfRoKZifaHESbQbTZizZ8WLo5RvdZg8XPyrfZAeAHwA-jdonu9_Y_sV8Bn4mE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537714118</pqid></control><display><type>article</type><title>Heralded entanglement distribution between two absorptive quantum memories</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Xiao ; Hu, Jun ; Li, Zong-Feng ; Li, Xue ; Li, Pei-Yun ; Liang, Peng-Jun ; Zhou, Zong-Quan ; Li, Chuan-Feng ; Guo, Guang-Can</creator><creatorcontrib>Liu, Xiao ; Hu, Jun ; Li, Zong-Feng ; Li, Xue ; Li, Pei-Yun ; Liang, Peng-Jun ; Zhou, Zong-Quan ; Li, Chuan-Feng ; Guo, Guang-Can</creatorcontrib><description>Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground
1
. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping
2
. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories
3
–
9
. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.
Heralded entanglement is realized between two solid-state absorptive quantum memories 3.5 metres apart and with a bandwidth of 1 gigahertz, and with a fidelity of approximately 80%.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03505-3</identifier><identifier>PMID: 34079139</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/481 ; Absorptivity ; Channels ; Communication channels ; Efficiency ; Entangled states ; Humanities and Social Sciences ; Light sources ; multidisciplinary ; Multiplexing ; Nodes ; Quantum entanglement ; Quantum phenomena ; Repeaters ; Science ; Science (multidisciplinary) ; Solid state ; Standard deviation</subject><ispartof>Nature (London), 2021-06, Vol.594 (7861), p.41-45</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Jun 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-abe90012e8bcc54f7e8049e09cc059f3d829dc4b4314e4af228d4ef42dee7183</citedby><cites>FETCH-LOGICAL-c375t-abe90012e8bcc54f7e8049e09cc059f3d829dc4b4314e4af228d4ef42dee7183</cites><orcidid>0000-0001-6815-8929 ; 0000-0001-6357-0084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03505-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03505-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34079139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Li, Zong-Feng</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Pei-Yun</creatorcontrib><creatorcontrib>Liang, Peng-Jun</creatorcontrib><creatorcontrib>Zhou, Zong-Quan</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Heralded entanglement distribution between two absorptive quantum memories</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground
1
. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping
2
. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories
3
–
9
. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.
Heralded entanglement is realized between two solid-state absorptive quantum memories 3.5 metres apart and with a bandwidth of 1 gigahertz, and with a fidelity of approximately 80%.</description><subject>639/766/400/482</subject><subject>639/766/483/481</subject><subject>Absorptivity</subject><subject>Channels</subject><subject>Communication channels</subject><subject>Efficiency</subject><subject>Entangled states</subject><subject>Humanities and Social Sciences</subject><subject>Light sources</subject><subject>multidisciplinary</subject><subject>Multiplexing</subject><subject>Nodes</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Repeaters</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid state</subject><subject>Standard deviation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-AQ8S8OIlOvuV3RylqFUKXnpfNsmkpOSj3d1Y_PemHyp48DQD88w7w0PINYV7Clw_eEGlTmJgNAYuQcb8hIypUEksEq1OyRiA6Rg0T0bkwvsVAEiqxDkZcQEqpTwdk7cZOlsXWETYBtsua2yGJioqH1yV9aHq2ijDsEVso7DtIpv5zq1D9YHRprdt6JuowaZzFfpLclba2uPVsU7I4vlpMZ3F8_eX1-njPM65kiG2GaYAlKHO8lyKUqEGkSKkeQ4yLXmhWVrkIhOcChS2ZEwXAkvBCkRFNZ-Qu0Ps2nWbHn0wTeVzrGvbYtd7wyRPVKqUSgb09g-66nrXDs_tKKWooPtAdqBy13nvsDRrVzXWfRoKZifaHESbQbTZizZ8WLo5RvdZg8XPyrfZAeAHwA-jdonu9_Y_sV8Bn4mE</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Liu, Xiao</creator><creator>Hu, Jun</creator><creator>Li, Zong-Feng</creator><creator>Li, Xue</creator><creator>Li, Pei-Yun</creator><creator>Liang, Peng-Jun</creator><creator>Zhou, Zong-Quan</creator><creator>Li, Chuan-Feng</creator><creator>Guo, Guang-Can</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid><orcidid>https://orcid.org/0000-0001-6357-0084</orcidid></search><sort><creationdate>20210603</creationdate><title>Heralded entanglement distribution between two absorptive quantum memories</title><author>Liu, Xiao ; Hu, Jun ; Li, Zong-Feng ; Li, Xue ; Li, Pei-Yun ; Liang, Peng-Jun ; Zhou, Zong-Quan ; Li, Chuan-Feng ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-abe90012e8bcc54f7e8049e09cc059f3d829dc4b4314e4af228d4ef42dee7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/400/482</topic><topic>639/766/483/481</topic><topic>Absorptivity</topic><topic>Channels</topic><topic>Communication channels</topic><topic>Efficiency</topic><topic>Entangled states</topic><topic>Humanities and Social Sciences</topic><topic>Light sources</topic><topic>multidisciplinary</topic><topic>Multiplexing</topic><topic>Nodes</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Repeaters</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid state</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Li, Zong-Feng</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Pei-Yun</creatorcontrib><creatorcontrib>Liang, Peng-Jun</creatorcontrib><creatorcontrib>Zhou, Zong-Quan</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao</au><au>Hu, Jun</au><au>Li, Zong-Feng</au><au>Li, Xue</au><au>Li, Pei-Yun</au><au>Liang, Peng-Jun</au><au>Zhou, Zong-Quan</au><au>Li, Chuan-Feng</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heralded entanglement distribution between two absorptive quantum memories</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-06-03</date><risdate>2021</risdate><volume>594</volume><issue>7861</issue><spage>41</spage><epage>45</epage><pages>41-45</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground
1
. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping
2
. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories
3
–
9
. These schemes suffer from the trade-off between multiplexing capacity and deterministic properties and hence hinder the development of efficient quantum repeaters. Quantum repeaters based on absorptive quantum memories can overcome such limitations because they separate the quantum memories and the quantum light sources. Here we present an experimental demonstration of heralded entanglement between absorptive quantum memories. We build two nodes separated by 3.5 metres, each containing a polarization-entangled photon-pair source and a solid-state quantum memory with bandwidth up to 1 gigahertz. A joint Bell-state measurement in the middle station heralds the successful distribution of maximally entangled states between the two quantum memories with a fidelity of 80.4 ± 2.2 per cent (±1 standard deviation). The quantum nodes and channels demonstrated here can serve as an elementary link of a quantum repeater. Moreover, the wideband absorptive quantum memories used in the nodes are compatible with deterministic entanglement sources and can simultaneously support multiplexing, which paves the way for the construction of practical solid-state quantum repeaters and high-speed quantum networks.
Heralded entanglement is realized between two solid-state absorptive quantum memories 3.5 metres apart and with a bandwidth of 1 gigahertz, and with a fidelity of approximately 80%.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34079139</pmid><doi>10.1038/s41586-021-03505-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid><orcidid>https://orcid.org/0000-0001-6357-0084</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-06, Vol.594 (7861), p.41-45 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2536797776 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/400/482 639/766/483/481 Absorptivity Channels Communication channels Efficiency Entangled states Humanities and Social Sciences Light sources multidisciplinary Multiplexing Nodes Quantum entanglement Quantum phenomena Repeaters Science Science (multidisciplinary) Solid state Standard deviation |
title | Heralded entanglement distribution between two absorptive quantum memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heralded%20entanglement%20distribution%20between%20two%20absorptive%20quantum%20memories&rft.jtitle=Nature%20(London)&rft.au=Liu,%20Xiao&rft.date=2021-06-03&rft.volume=594&rft.issue=7861&rft.spage=41&rft.epage=45&rft.pages=41-45&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03505-3&rft_dat=%3Cproquest_cross%3E2537714118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537714118&rft_id=info:pmid/34079139&rfr_iscdi=true |