A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images

In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the lef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Upendra, Roshan Reddy, Wentz, Brian Jamison, Shontz, Suzanne M, Linte, Cristian A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 47
creator Upendra, Roshan Reddy
Wentz, Brian Jamison
Shontz, Suzanne M
Linte, Cristian A
description In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.
doi_str_mv 10.22489/CinC.2020.204
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536795806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9344439</ieee_id><sourcerecordid>2536795806</sourcerecordid><originalsourceid>FETCH-LOGICAL-i314t-a8bf0b98a338b68dc4481bad088591aa494fca3ce3df75f7a430b852e7553fdb3</originalsourceid><addsrcrecordid>eNpVkM9PFTEQx6vBCMF39WJieuSy2O2P7fRiQlYEEtCEQOJt0-7OPqq7W2x3IZ79xy08fGiTybT5fuY7MyXkbckOOZdgPtR-qg854_nN5AuyMhpKzXMI4Ool2eOCqwJAf9vZ3qtyl6xS-s7yURpMBa_JrpBMGxBmj_w-onWY7sKwzD5MdqBfcImPab4P8UfhbMKOfsI-xNG6AenZaNdIL3Ht0xztQxG9wPkmdDQjtLax87alF-FROU6zHzdQH8NI8_z4zFxuzNIb8qq3Q8LVU94n15-Pr-rT4vzryVl9dF54Ucq5sOB65gxYIcBV0LVSQulsxwCUKa2VRvatFS2Krteq11YK5kBx1EqJvnNin3zc-N4ubsSuxSlvMDS3Mc8YfzXB-uZ_ZfI3zTrcNVBWYKDKBgdPBjH8XDDNzehTi8NgJwxLargSlTYK2AP6_t9e2yZ_fz4D7zaAR8StbISUMqt_AGpMlP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2536795806</pqid></control><display><type>conference_proceeding</type><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</creator><creatorcontrib>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</creatorcontrib><description>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</description><identifier>ISSN: 2325-8861</identifier><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9781728173825</identifier><identifier>EISBN: 1728173825</identifier><identifier>DOI: 10.22489/CinC.2020.204</identifier><identifier>PMID: 34079839</identifier><language>eng</language><publisher>United States: Creative Commons; the authors hold their copyright</publisher><subject>Motion estimation ; Myocardium ; Smoothing methods ; Solid modeling ; Strain ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2020 Computing in Cardiology, 2020, Vol.47, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34079839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Upendra, Roshan Reddy</creatorcontrib><creatorcontrib>Wentz, Brian Jamison</creatorcontrib><creatorcontrib>Shontz, Suzanne M</creatorcontrib><creatorcontrib>Linte, Cristian A</creatorcontrib><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><title>2020 Computing in Cardiology</title><addtitle>CinC</addtitle><addtitle>Comput Cardiol (2010)</addtitle><description>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</description><subject>Motion estimation</subject><subject>Myocardium</subject><subject>Smoothing methods</subject><subject>Solid modeling</subject><subject>Strain</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2325-8861</issn><issn>2325-887X</issn><isbn>9781728173825</isbn><isbn>1728173825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9PFTEQx6vBCMF39WJieuSy2O2P7fRiQlYEEtCEQOJt0-7OPqq7W2x3IZ79xy08fGiTybT5fuY7MyXkbckOOZdgPtR-qg854_nN5AuyMhpKzXMI4Ool2eOCqwJAf9vZ3qtyl6xS-s7yURpMBa_JrpBMGxBmj_w-onWY7sKwzD5MdqBfcImPab4P8UfhbMKOfsI-xNG6AenZaNdIL3Ht0xztQxG9wPkmdDQjtLax87alF-FROU6zHzdQH8NI8_z4zFxuzNIb8qq3Q8LVU94n15-Pr-rT4vzryVl9dF54Ucq5sOB65gxYIcBV0LVSQulsxwCUKa2VRvatFS2Krteq11YK5kBx1EqJvnNin3zc-N4ubsSuxSlvMDS3Mc8YfzXB-uZ_ZfI3zTrcNVBWYKDKBgdPBjH8XDDNzehTi8NgJwxLargSlTYK2AP6_t9e2yZ_fz4D7zaAR8StbISUMqt_AGpMlP0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Upendra, Roshan Reddy</creator><creator>Wentz, Brian Jamison</creator><creator>Shontz, Suzanne M</creator><creator>Linte, Cristian A</creator><general>Creative Commons; the authors hold their copyright</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200901</creationdate><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><author>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i314t-a8bf0b98a338b68dc4481bad088591aa494fca3ce3df75f7a430b852e7553fdb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Motion estimation</topic><topic>Myocardium</topic><topic>Smoothing methods</topic><topic>Solid modeling</topic><topic>Strain</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Upendra, Roshan Reddy</creatorcontrib><creatorcontrib>Wentz, Brian Jamison</creatorcontrib><creatorcontrib>Shontz, Suzanne M</creatorcontrib><creatorcontrib>Linte, Cristian A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upendra, Roshan Reddy</au><au>Wentz, Brian Jamison</au><au>Shontz, Suzanne M</au><au>Linte, Cristian A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</atitle><btitle>2020 Computing in Cardiology</btitle><stitle>CinC</stitle><addtitle>Comput Cardiol (2010)</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>47</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2325-8861</issn><eissn>2325-887X</eissn><eisbn>9781728173825</eisbn><eisbn>1728173825</eisbn><abstract>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</abstract><cop>United States</cop><pub>Creative Commons; the authors hold their copyright</pub><pmid>34079839</pmid><doi>10.22489/CinC.2020.204</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2325-8861
ispartof 2020 Computing in Cardiology, 2020, Vol.47, p.1-4
issn 2325-8861
2325-887X
language eng
recordid cdi_proquest_miscellaneous_2536795806
source EZB-FREE-00999 freely available EZB journals
subjects Motion estimation
Myocardium
Smoothing methods
Solid modeling
Strain
Three-dimensional displays
Two dimensional displays
title A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Convolutional%20Neural%20Network-based%20Deformable%20Image%20Registration%20Method%20for%20Cardiac%20Motion%20Estimation%20from%20Cine%20Cardiac%20MR%20Images&rft.btitle=2020%20Computing%20in%20Cardiology&rft.au=Upendra,%20Roshan%20Reddy&rft.date=2020-09-01&rft.volume=47&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2325-8861&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2020.204&rft_dat=%3Cproquest_pubme%3E2536795806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781728173825&rft.eisbn_list=1728173825&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536795806&rft_id=info:pmid/34079839&rft_ieee_id=9344439&rfr_iscdi=true