A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images
In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the lef...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 47 |
creator | Upendra, Roshan Reddy Wentz, Brian Jamison Shontz, Suzanne M Linte, Cristian A |
description | In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation. |
doi_str_mv | 10.22489/CinC.2020.204 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536795806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9344439</ieee_id><sourcerecordid>2536795806</sourcerecordid><originalsourceid>FETCH-LOGICAL-i314t-a8bf0b98a338b68dc4481bad088591aa494fca3ce3df75f7a430b852e7553fdb3</originalsourceid><addsrcrecordid>eNpVkM9PFTEQx6vBCMF39WJieuSy2O2P7fRiQlYEEtCEQOJt0-7OPqq7W2x3IZ79xy08fGiTybT5fuY7MyXkbckOOZdgPtR-qg854_nN5AuyMhpKzXMI4Ool2eOCqwJAf9vZ3qtyl6xS-s7yURpMBa_JrpBMGxBmj_w-onWY7sKwzD5MdqBfcImPab4P8UfhbMKOfsI-xNG6AenZaNdIL3Ht0xztQxG9wPkmdDQjtLax87alF-FROU6zHzdQH8NI8_z4zFxuzNIb8qq3Q8LVU94n15-Pr-rT4vzryVl9dF54Ucq5sOB65gxYIcBV0LVSQulsxwCUKa2VRvatFS2Krteq11YK5kBx1EqJvnNin3zc-N4ubsSuxSlvMDS3Mc8YfzXB-uZ_ZfI3zTrcNVBWYKDKBgdPBjH8XDDNzehTi8NgJwxLargSlTYK2AP6_t9e2yZ_fz4D7zaAR8StbISUMqt_AGpMlP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2536795806</pqid></control><display><type>conference_proceeding</type><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</creator><creatorcontrib>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</creatorcontrib><description>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</description><identifier>ISSN: 2325-8861</identifier><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9781728173825</identifier><identifier>EISBN: 1728173825</identifier><identifier>DOI: 10.22489/CinC.2020.204</identifier><identifier>PMID: 34079839</identifier><language>eng</language><publisher>United States: Creative Commons; the authors hold their copyright</publisher><subject>Motion estimation ; Myocardium ; Smoothing methods ; Solid modeling ; Strain ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2020 Computing in Cardiology, 2020, Vol.47, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34079839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Upendra, Roshan Reddy</creatorcontrib><creatorcontrib>Wentz, Brian Jamison</creatorcontrib><creatorcontrib>Shontz, Suzanne M</creatorcontrib><creatorcontrib>Linte, Cristian A</creatorcontrib><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><title>2020 Computing in Cardiology</title><addtitle>CinC</addtitle><addtitle>Comput Cardiol (2010)</addtitle><description>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</description><subject>Motion estimation</subject><subject>Myocardium</subject><subject>Smoothing methods</subject><subject>Solid modeling</subject><subject>Strain</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2325-8861</issn><issn>2325-887X</issn><isbn>9781728173825</isbn><isbn>1728173825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9PFTEQx6vBCMF39WJieuSy2O2P7fRiQlYEEtCEQOJt0-7OPqq7W2x3IZ79xy08fGiTybT5fuY7MyXkbckOOZdgPtR-qg854_nN5AuyMhpKzXMI4Ool2eOCqwJAf9vZ3qtyl6xS-s7yURpMBa_JrpBMGxBmj_w-onWY7sKwzD5MdqBfcImPab4P8UfhbMKOfsI-xNG6AenZaNdIL3Ht0xztQxG9wPkmdDQjtLax87alF-FROU6zHzdQH8NI8_z4zFxuzNIb8qq3Q8LVU94n15-Pr-rT4vzryVl9dF54Ucq5sOB65gxYIcBV0LVSQulsxwCUKa2VRvatFS2Krteq11YK5kBx1EqJvnNin3zc-N4ubsSuxSlvMDS3Mc8YfzXB-uZ_ZfI3zTrcNVBWYKDKBgdPBjH8XDDNzehTi8NgJwxLargSlTYK2AP6_t9e2yZ_fz4D7zaAR8StbISUMqt_AGpMlP0</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Upendra, Roshan Reddy</creator><creator>Wentz, Brian Jamison</creator><creator>Shontz, Suzanne M</creator><creator>Linte, Cristian A</creator><general>Creative Commons; the authors hold their copyright</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200901</creationdate><title>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</title><author>Upendra, Roshan Reddy ; Wentz, Brian Jamison ; Shontz, Suzanne M ; Linte, Cristian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i314t-a8bf0b98a338b68dc4481bad088591aa494fca3ce3df75f7a430b852e7553fdb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Motion estimation</topic><topic>Myocardium</topic><topic>Smoothing methods</topic><topic>Solid modeling</topic><topic>Strain</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Upendra, Roshan Reddy</creatorcontrib><creatorcontrib>Wentz, Brian Jamison</creatorcontrib><creatorcontrib>Shontz, Suzanne M</creatorcontrib><creatorcontrib>Linte, Cristian A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upendra, Roshan Reddy</au><au>Wentz, Brian Jamison</au><au>Shontz, Suzanne M</au><au>Linte, Cristian A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images</atitle><btitle>2020 Computing in Cardiology</btitle><stitle>CinC</stitle><addtitle>Comput Cardiol (2010)</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>47</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2325-8861</issn><eissn>2325-887X</eissn><eisbn>9781728173825</eisbn><eisbn>1728173825</eisbn><abstract>In this work, we describe an unsupervised deep learning framework featuring a Laplacian-based operator as smoothing loss for deformable registration of 3D cine cardiac magnetic resonance (CMR) images. Before registration, the input 3D images are corrected for slice misalignment by segmenting the left ventricle (LV) blood-pool, LV myocardium and right ventricle (RV) blood-pool using a U-Net model and aligning the 2D slices along the center of the LV blood-pool. We conducted experiments using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We used the registration deformation field to warp the manually segmented LV blood-pool, LV myocardium and RV blood-pool labels from end-diastole (ED) frame to the other frames in the cardiac cycle. We achieved a mean Dice score of 94.84%, 85.22% and 84.36%, and Hausdorff distance (HD) of 2.74 mm, 5.88 mm and 9.04 mm, for the LV blood-pool, LV myocardium and RV blood-pool, respectively. We also introduce a pipeline to estimate patient tractography using the proposed CNN-based cardiac motion estimation.</abstract><cop>United States</cop><pub>Creative Commons; the authors hold their copyright</pub><pmid>34079839</pmid><doi>10.22489/CinC.2020.204</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-8861 |
ispartof | 2020 Computing in Cardiology, 2020, Vol.47, p.1-4 |
issn | 2325-8861 2325-887X |
language | eng |
recordid | cdi_proquest_miscellaneous_2536795806 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Motion estimation Myocardium Smoothing methods Solid modeling Strain Three-dimensional displays Two dimensional displays |
title | A Convolutional Neural Network-based Deformable Image Registration Method for Cardiac Motion Estimation from Cine Cardiac MR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Convolutional%20Neural%20Network-based%20Deformable%20Image%20Registration%20Method%20for%20Cardiac%20Motion%20Estimation%20from%20Cine%20Cardiac%20MR%20Images&rft.btitle=2020%20Computing%20in%20Cardiology&rft.au=Upendra,%20Roshan%20Reddy&rft.date=2020-09-01&rft.volume=47&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2325-8861&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2020.204&rft_dat=%3Cproquest_pubme%3E2536795806%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781728173825&rft.eisbn_list=1728173825&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536795806&rft_id=info:pmid/34079839&rft_ieee_id=9344439&rfr_iscdi=true |