Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data
High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high le...
Gespeichert in:
Veröffentlicht in: | Interdisciplinary sciences : computational life sciences 2021-09, Vol.13 (3), p.476-489 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 3 |
container_start_page | 476 |
container_title | Interdisciplinary sciences : computational life sciences |
container_volume | 13 |
creator | Liu, Jin-Xing Wang, Chuan-Yuan Gao, Ying-Lian Zhang, Yulin Wang, Juan Li, Sheng-Jun |
description | High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably. |
doi_str_mv | 10.1007/s12539-021-00444-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536484587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536484587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKd_wKuCN95E89kml2V-wlCY09uQpaejs2u7pFW2X29mBcELb5Kc8LyHc54oOif4imCcXntCBVMIU4Iw5pwjcRCNiExSRHhCD8NbEYZoKshxdOL9CuOES4ZHkc1y03blB8TzpjMVejOuNF3Z1PEMln0Vqh3k8bT5RDNTv4fP1oGHuhuYonFxVptquyvrZfwSjgrQBKoqnj1lyMMmvjGdOY2OClN5OPu5x9Hr3e188oCmz_ePk2yKLBO0QybPTW55ClKlC2vzRFEGBWNUMYDUCMmlZVgKShYqN4TzgkqpuDALLjnYnI2jy6Fv65pND77T69LbMI2poem9DorC1lzINKAXf9BV07uwyZ5KCFY0TVSg6EBZ13jvoNCtK9fGbTXBeu9dD9518K6_vWsRQmwI-QDXS3C_rf9JfQHg34Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092769</pqid></control><display><type>article</type><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><source>SpringerNature Journals</source><creator>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</creator><creatorcontrib>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</creatorcontrib><description>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-021-00444-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Biomedical and Life Sciences ; Clustering ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Data analysis ; Eigenvalues ; Gene expression ; Gene sequencing ; Health Sciences ; Heterogeneity ; Information processing ; Life Sciences ; Mathematical and Computational Physics ; Medicine ; Next-generation sequencing ; Noise levels ; Original Research Article ; Representations ; Ribonucleic acid ; RNA ; Statistics for Life Sciences ; Subspaces ; Theoretical ; Theoretical and Computational Chemistry ; Variation</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.476-489</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2021</rights><rights>International Association of Scientists in the Interdisciplinary Areas 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</citedby><cites>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-021-00444-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-021-00444-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Wang, Chuan-Yuan</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Sheng-Jun</creatorcontrib><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><description>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</description><subject>Biomedical and Life Sciences</subject><subject>Clustering</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Data analysis</subject><subject>Eigenvalues</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Health Sciences</subject><subject>Heterogeneity</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Next-generation sequencing</subject><subject>Noise levels</subject><subject>Original Research Article</subject><subject>Representations</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Statistics for Life Sciences</subject><subject>Subspaces</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><subject>Variation</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKd_wKuCN95E89kml2V-wlCY09uQpaejs2u7pFW2X29mBcELb5Kc8LyHc54oOif4imCcXntCBVMIU4Iw5pwjcRCNiExSRHhCD8NbEYZoKshxdOL9CuOES4ZHkc1y03blB8TzpjMVejOuNF3Z1PEMln0Vqh3k8bT5RDNTv4fP1oGHuhuYonFxVptquyvrZfwSjgrQBKoqnj1lyMMmvjGdOY2OClN5OPu5x9Hr3e188oCmz_ePk2yKLBO0QybPTW55ClKlC2vzRFEGBWNUMYDUCMmlZVgKShYqN4TzgkqpuDALLjnYnI2jy6Fv65pND77T69LbMI2poem9DorC1lzINKAXf9BV07uwyZ5KCFY0TVSg6EBZ13jvoNCtK9fGbTXBeu9dD9518K6_vWsRQmwI-QDXS3C_rf9JfQHg34Vw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Jin-Xing</creator><creator>Wang, Chuan-Yuan</creator><creator>Gao, Ying-Lian</creator><creator>Zhang, Yulin</creator><creator>Wang, Juan</creator><creator>Li, Sheng-Jun</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20210901</creationdate><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><author>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Clustering</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Data analysis</topic><topic>Eigenvalues</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Health Sciences</topic><topic>Heterogeneity</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Next-generation sequencing</topic><topic>Noise levels</topic><topic>Original Research Article</topic><topic>Representations</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Statistics for Life Sciences</topic><topic>Subspaces</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Wang, Chuan-Yuan</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Sheng-Jun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jin-Xing</au><au>Wang, Chuan-Yuan</au><au>Gao, Ying-Lian</au><au>Zhang, Yulin</au><au>Wang, Juan</au><au>Li, Sheng-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>476</spage><epage>489</epage><pages>476-489</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s12539-021-00444-5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1913-2751 |
ispartof | Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.476-489 |
issn | 1913-2751 1867-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_2536484587 |
source | SpringerNature Journals |
subjects | Biomedical and Life Sciences Clustering Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Data analysis Eigenvalues Gene expression Gene sequencing Health Sciences Heterogeneity Information processing Life Sciences Mathematical and Computational Physics Medicine Next-generation sequencing Noise levels Original Research Article Representations Ribonucleic acid RNA Statistics for Life Sciences Subspaces Theoretical Theoretical and Computational Chemistry Variation |
title | Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Total-Variation%20Regularized%20Low-Rank%20Representation%20for%20Analyzing%20Single-Cell%20RNA-seq%20Data&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Liu,%20Jin-Xing&rft.date=2021-09-01&rft.volume=13&rft.issue=3&rft.spage=476&rft.epage=489&rft.pages=476-489&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-021-00444-5&rft_dat=%3Cproquest_cross%3E2536484587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092769&rft_id=info:pmid/&rfr_iscdi=true |