Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data

High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interdisciplinary sciences : computational life sciences 2021-09, Vol.13 (3), p.476-489
Hauptverfasser: Liu, Jin-Xing, Wang, Chuan-Yuan, Gao, Ying-Lian, Zhang, Yulin, Wang, Juan, Li, Sheng-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 3
container_start_page 476
container_title Interdisciplinary sciences : computational life sciences
container_volume 13
creator Liu, Jin-Xing
Wang, Chuan-Yuan
Gao, Ying-Lian
Zhang, Yulin
Wang, Juan
Li, Sheng-Jun
description High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.
doi_str_mv 10.1007/s12539-021-00444-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536484587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536484587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKd_wKuCN95E89kml2V-wlCY09uQpaejs2u7pFW2X29mBcELb5Kc8LyHc54oOif4imCcXntCBVMIU4Iw5pwjcRCNiExSRHhCD8NbEYZoKshxdOL9CuOES4ZHkc1y03blB8TzpjMVejOuNF3Z1PEMln0Vqh3k8bT5RDNTv4fP1oGHuhuYonFxVptquyvrZfwSjgrQBKoqnj1lyMMmvjGdOY2OClN5OPu5x9Hr3e188oCmz_ePk2yKLBO0QybPTW55ClKlC2vzRFEGBWNUMYDUCMmlZVgKShYqN4TzgkqpuDALLjnYnI2jy6Fv65pND77T69LbMI2poem9DorC1lzINKAXf9BV07uwyZ5KCFY0TVSg6EBZ13jvoNCtK9fGbTXBeu9dD9518K6_vWsRQmwI-QDXS3C_rf9JfQHg34Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092769</pqid></control><display><type>article</type><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><source>SpringerNature Journals</source><creator>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</creator><creatorcontrib>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</creatorcontrib><description>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-021-00444-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Biomedical and Life Sciences ; Clustering ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Data analysis ; Eigenvalues ; Gene expression ; Gene sequencing ; Health Sciences ; Heterogeneity ; Information processing ; Life Sciences ; Mathematical and Computational Physics ; Medicine ; Next-generation sequencing ; Noise levels ; Original Research Article ; Representations ; Ribonucleic acid ; RNA ; Statistics for Life Sciences ; Subspaces ; Theoretical ; Theoretical and Computational Chemistry ; Variation</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.476-489</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2021</rights><rights>International Association of Scientists in the Interdisciplinary Areas 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</citedby><cites>FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-021-00444-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-021-00444-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Wang, Chuan-Yuan</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Sheng-Jun</creatorcontrib><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><description>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</description><subject>Biomedical and Life Sciences</subject><subject>Clustering</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Data analysis</subject><subject>Eigenvalues</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Health Sciences</subject><subject>Heterogeneity</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Next-generation sequencing</subject><subject>Noise levels</subject><subject>Original Research Article</subject><subject>Representations</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Statistics for Life Sciences</subject><subject>Subspaces</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><subject>Variation</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKd_wKuCN95E89kml2V-wlCY09uQpaejs2u7pFW2X29mBcELb5Kc8LyHc54oOif4imCcXntCBVMIU4Iw5pwjcRCNiExSRHhCD8NbEYZoKshxdOL9CuOES4ZHkc1y03blB8TzpjMVejOuNF3Z1PEMln0Vqh3k8bT5RDNTv4fP1oGHuhuYonFxVptquyvrZfwSjgrQBKoqnj1lyMMmvjGdOY2OClN5OPu5x9Hr3e188oCmz_ePk2yKLBO0QybPTW55ClKlC2vzRFEGBWNUMYDUCMmlZVgKShYqN4TzgkqpuDALLjnYnI2jy6Fv65pND77T69LbMI2poem9DorC1lzINKAXf9BV07uwyZ5KCFY0TVSg6EBZ13jvoNCtK9fGbTXBeu9dD9518K6_vWsRQmwI-QDXS3C_rf9JfQHg34Vw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Jin-Xing</creator><creator>Wang, Chuan-Yuan</creator><creator>Gao, Ying-Lian</creator><creator>Zhang, Yulin</creator><creator>Wang, Juan</creator><creator>Li, Sheng-Jun</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20210901</creationdate><title>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</title><author>Liu, Jin-Xing ; Wang, Chuan-Yuan ; Gao, Ying-Lian ; Zhang, Yulin ; Wang, Juan ; Li, Sheng-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-addadc47e897bccd6923ef33293ee7a5848c308521b9da144f288945ab484ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Clustering</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Data analysis</topic><topic>Eigenvalues</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Health Sciences</topic><topic>Heterogeneity</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Next-generation sequencing</topic><topic>Noise levels</topic><topic>Original Research Article</topic><topic>Representations</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Statistics for Life Sciences</topic><topic>Subspaces</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jin-Xing</creatorcontrib><creatorcontrib>Wang, Chuan-Yuan</creatorcontrib><creatorcontrib>Gao, Ying-Lian</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Li, Sheng-Jun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jin-Xing</au><au>Wang, Chuan-Yuan</au><au>Gao, Ying-Lian</au><au>Zhang, Yulin</au><au>Wang, Juan</au><au>Li, Sheng-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>476</spage><epage>489</epage><pages>476-489</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell’s heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s12539-021-00444-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1913-2751
ispartof Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.476-489
issn 1913-2751
1867-1462
language eng
recordid cdi_proquest_miscellaneous_2536484587
source SpringerNature Journals
subjects Biomedical and Life Sciences
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Data analysis
Eigenvalues
Gene expression
Gene sequencing
Health Sciences
Heterogeneity
Information processing
Life Sciences
Mathematical and Computational Physics
Medicine
Next-generation sequencing
Noise levels
Original Research Article
Representations
Ribonucleic acid
RNA
Statistics for Life Sciences
Subspaces
Theoretical
Theoretical and Computational Chemistry
Variation
title Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Total-Variation%20Regularized%20Low-Rank%20Representation%20for%20Analyzing%20Single-Cell%20RNA-seq%20Data&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Liu,%20Jin-Xing&rft.date=2021-09-01&rft.volume=13&rft.issue=3&rft.spage=476&rft.epage=489&rft.pages=476-489&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-021-00444-5&rft_dat=%3Cproquest_cross%3E2536484587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092769&rft_id=info:pmid/&rfr_iscdi=true