Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles

Understanding the complex connectivity structure of the brain is a major challenge in neuroscience. Vast and ever-expanding literature about neuronal connectivity between brain regions already exists in published research articles and databases. However, with the ever-expanding increase in published...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interdisciplinary sciences : computational life sciences 2021-12, Vol.13 (4), p.731-750
Hauptverfasser: Sharma, Ashika, Jayakumar, Jaikishan, Mitra, Partha P., Chakraborti, Sutanu, Kumar, P. Sreenivasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 750
container_issue 4
container_start_page 731
container_title Interdisciplinary sciences : computational life sciences
container_volume 13
creator Sharma, Ashika
Jayakumar, Jaikishan
Mitra, Partha P.
Chakraborti, Sutanu
Kumar, P. Sreenivasa
description Understanding the complex connectivity structure of the brain is a major challenge in neuroscience. Vast and ever-expanding literature about neuronal connectivity between brain regions already exists in published research articles and databases. However, with the ever-expanding increase in published articles and repositories, it becomes difficult for a neuroscientist to engage with the breadth and depth of any given field within neuroscience. Natural Language Processing (NLP) techniques can be used to mine ‘Brain Region Connectivity’ information from published articles to build a centralized connectivity resource helping neuroscience researchers to gain quick access to research findings. Manually curating and continuously updating such a resource involves significant time and effort. This paper presents an application of supervised machine learning algorithms that perform shallow and deep linguistic analysis of text to automatically extract connectivity between brain region mentions. Our proposed algorithms are evaluated using benchmark datasets collated from PubMed and our own dataset of full text articles annotated by a domain expert. We also present a comparison with state-of-the-art methods including BioBERT. Proposed methods achieve best recall and F 2 scores negating the need for any domain-specific predefined linguistic patterns. Our paper presents a novel effort towards automatically generating interpretable patterns of connectivity for extracting connected brain region mentions from text and can be expanded to include any other domain-specific information. Graphic Abstract
doi_str_mv 10.1007/s12539-021-00443-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536482532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536482532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-24a9fef0d656e57cb40e6bb10d8d39dd2e0c6f570c029d9d6b7177e046606463</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxSPUSmwpX4CTJS69hI7_xN4ct6ttQdoWCbhbXmcCRlk7tR20fHu8DVKlHnqZmcNvnubNq6oLClcUQH1NlDW8rYHRGkAIXsuTakGXUtVUSPahzC3lNVMNPa0-pfQMIMWSw6I6rMZxcNZkFzwJPbmfRowvLmFHfhr75DySLZronX8kOZDNIUdjM_kWjfNkHbxHm92Ly6_kxvch7mehPoY9-YVTDMk69BbJHaYiY5_IKmZnB0yfq4-9GRKev_ez6uH75mF9XW9vf9ysV9vacuC5ZsK0PfbQyUZio-xOAMrdjkK37HjbdQzByr5RYIG1XdvJnaJKIQgpi0XJz6ovs-wYw-8JU9Z7lywOg_EYpqTL28onSmUFvfwHfQ5T9OW4Qi2Z4MCUKBSbKVvMpYi9HqPbm_iqKehjFnrOQpcs9J8s9PEKPi-lAvtHjH-l_7P1BoOZjX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582430274</pqid></control><display><type>article</type><title>Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles</title><source>SpringerNature Journals</source><creator>Sharma, Ashika ; Jayakumar, Jaikishan ; Mitra, Partha P. ; Chakraborti, Sutanu ; Kumar, P. Sreenivasa</creator><creatorcontrib>Sharma, Ashika ; Jayakumar, Jaikishan ; Mitra, Partha P. ; Chakraborti, Sutanu ; Kumar, P. Sreenivasa</creatorcontrib><description>Understanding the complex connectivity structure of the brain is a major challenge in neuroscience. Vast and ever-expanding literature about neuronal connectivity between brain regions already exists in published research articles and databases. However, with the ever-expanding increase in published articles and repositories, it becomes difficult for a neuroscientist to engage with the breadth and depth of any given field within neuroscience. Natural Language Processing (NLP) techniques can be used to mine ‘Brain Region Connectivity’ information from published articles to build a centralized connectivity resource helping neuroscience researchers to gain quick access to research findings. Manually curating and continuously updating such a resource involves significant time and effort. This paper presents an application of supervised machine learning algorithms that perform shallow and deep linguistic analysis of text to automatically extract connectivity between brain region mentions. Our proposed algorithms are evaluated using benchmark datasets collated from PubMed and our own dataset of full text articles annotated by a domain expert. We also present a comparison with state-of-the-art methods including BioBERT. Proposed methods achieve best recall and F 2 scores negating the need for any domain-specific predefined linguistic patterns. Our paper presents a novel effort towards automatically generating interpretable patterns of connectivity for extracting connected brain region mentions from text and can be expanded to include any other domain-specific information. Graphic Abstract</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-021-00443-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Brain ; Brain research ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Datasets ; Health Sciences ; Information processing ; Learning algorithms ; Life Sciences ; Machine learning ; Mathematical and Computational Physics ; Medicine ; Natural language processing ; Nervous system ; Neural networks ; Neurosciences ; Original Research Article ; Statistics for Life Sciences ; Theoretical ; Theoretical and Computational Chemistry</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2021-12, Vol.13 (4), p.731-750</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2021</rights><rights>International Association of Scientists in the Interdisciplinary Areas 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-24a9fef0d656e57cb40e6bb10d8d39dd2e0c6f570c029d9d6b7177e046606463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-021-00443-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-021-00443-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sharma, Ashika</creatorcontrib><creatorcontrib>Jayakumar, Jaikishan</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Chakraborti, Sutanu</creatorcontrib><creatorcontrib>Kumar, P. Sreenivasa</creatorcontrib><title>Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><description>Understanding the complex connectivity structure of the brain is a major challenge in neuroscience. Vast and ever-expanding literature about neuronal connectivity between brain regions already exists in published research articles and databases. However, with the ever-expanding increase in published articles and repositories, it becomes difficult for a neuroscientist to engage with the breadth and depth of any given field within neuroscience. Natural Language Processing (NLP) techniques can be used to mine ‘Brain Region Connectivity’ information from published articles to build a centralized connectivity resource helping neuroscience researchers to gain quick access to research findings. Manually curating and continuously updating such a resource involves significant time and effort. This paper presents an application of supervised machine learning algorithms that perform shallow and deep linguistic analysis of text to automatically extract connectivity between brain region mentions. Our proposed algorithms are evaluated using benchmark datasets collated from PubMed and our own dataset of full text articles annotated by a domain expert. We also present a comparison with state-of-the-art methods including BioBERT. Proposed methods achieve best recall and F 2 scores negating the need for any domain-specific predefined linguistic patterns. Our paper presents a novel effort towards automatically generating interpretable patterns of connectivity for extracting connected brain region mentions from text and can be expanded to include any other domain-specific information. Graphic Abstract</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Brain</subject><subject>Brain research</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Datasets</subject><subject>Health Sciences</subject><subject>Information processing</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Natural language processing</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Original Research Article</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxSPUSmwpX4CTJS69hI7_xN4ct6ttQdoWCbhbXmcCRlk7tR20fHu8DVKlHnqZmcNvnubNq6oLClcUQH1NlDW8rYHRGkAIXsuTakGXUtVUSPahzC3lNVMNPa0-pfQMIMWSw6I6rMZxcNZkFzwJPbmfRowvLmFHfhr75DySLZronX8kOZDNIUdjM_kWjfNkHbxHm92Ly6_kxvch7mehPoY9-YVTDMk69BbJHaYiY5_IKmZnB0yfq4-9GRKev_ez6uH75mF9XW9vf9ysV9vacuC5ZsK0PfbQyUZio-xOAMrdjkK37HjbdQzByr5RYIG1XdvJnaJKIQgpi0XJz6ovs-wYw-8JU9Z7lywOg_EYpqTL28onSmUFvfwHfQ5T9OW4Qi2Z4MCUKBSbKVvMpYi9HqPbm_iqKehjFnrOQpcs9J8s9PEKPi-lAvtHjH-l_7P1BoOZjX0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Sharma, Ashika</creator><creator>Jayakumar, Jaikishan</creator><creator>Mitra, Partha P.</creator><creator>Chakraborti, Sutanu</creator><creator>Kumar, P. Sreenivasa</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211201</creationdate><title>Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles</title><author>Sharma, Ashika ; Jayakumar, Jaikishan ; Mitra, Partha P. ; Chakraborti, Sutanu ; Kumar, P. Sreenivasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-24a9fef0d656e57cb40e6bb10d8d39dd2e0c6f570c029d9d6b7177e046606463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Brain</topic><topic>Brain research</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Datasets</topic><topic>Health Sciences</topic><topic>Information processing</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Natural language processing</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Original Research Article</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ashika</creatorcontrib><creatorcontrib>Jayakumar, Jaikishan</creatorcontrib><creatorcontrib>Mitra, Partha P.</creatorcontrib><creatorcontrib>Chakraborti, Sutanu</creatorcontrib><creatorcontrib>Kumar, P. Sreenivasa</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Ashika</au><au>Jayakumar, Jaikishan</au><au>Mitra, Partha P.</au><au>Chakraborti, Sutanu</au><au>Kumar, P. Sreenivasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>731</spage><epage>750</epage><pages>731-750</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>Understanding the complex connectivity structure of the brain is a major challenge in neuroscience. Vast and ever-expanding literature about neuronal connectivity between brain regions already exists in published research articles and databases. However, with the ever-expanding increase in published articles and repositories, it becomes difficult for a neuroscientist to engage with the breadth and depth of any given field within neuroscience. Natural Language Processing (NLP) techniques can be used to mine ‘Brain Region Connectivity’ information from published articles to build a centralized connectivity resource helping neuroscience researchers to gain quick access to research findings. Manually curating and continuously updating such a resource involves significant time and effort. This paper presents an application of supervised machine learning algorithms that perform shallow and deep linguistic analysis of text to automatically extract connectivity between brain region mentions. Our proposed algorithms are evaluated using benchmark datasets collated from PubMed and our own dataset of full text articles annotated by a domain expert. We also present a comparison with state-of-the-art methods including BioBERT. Proposed methods achieve best recall and F 2 scores negating the need for any domain-specific predefined linguistic patterns. Our paper presents a novel effort towards automatically generating interpretable patterns of connectivity for extracting connected brain region mentions from text and can be expanded to include any other domain-specific information. Graphic Abstract</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s12539-021-00443-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1913-2751
ispartof Interdisciplinary sciences : computational life sciences, 2021-12, Vol.13 (4), p.731-750
issn 1913-2751
1867-1462
language eng
recordid cdi_proquest_miscellaneous_2536482532
source SpringerNature Journals
subjects Algorithms
Biomedical and Life Sciences
Brain
Brain research
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Datasets
Health Sciences
Information processing
Learning algorithms
Life Sciences
Machine learning
Mathematical and Computational Physics
Medicine
Natural language processing
Nervous system
Neural networks
Neurosciences
Original Research Article
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
title Application of Supervised Machine Learning to Extract Brain Connectivity Information from Neuroscience Research Articles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Supervised%20Machine%20Learning%20to%20Extract%20Brain%20Connectivity%20Information%20from%20Neuroscience%20Research%20Articles&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Sharma,%20Ashika&rft.date=2021-12-01&rft.volume=13&rft.issue=4&rft.spage=731&rft.epage=750&rft.pages=731-750&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-021-00443-6&rft_dat=%3Cproquest_cross%3E2536482532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582430274&rft_id=info:pmid/&rfr_iscdi=true