EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation

Cosolvent molecular dynamics (CMD) simulations involve an MD simulation of a protein in the presence of explicit water molecules mixed with cosolvent molecules to perform hotspot detection, binding site identification, and binding energy estimation, while other existing methods (e.g., MixMD, SILCS,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-06, Vol.61 (6), p.2744-2753
Hauptverfasser: Yanagisawa, Keisuke, Moriwaki, Yoshitaka, Terada, Tohru, Shimizu, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2753
container_issue 6
container_start_page 2744
container_title Journal of chemical information and modeling
container_volume 61
creator Yanagisawa, Keisuke
Moriwaki, Yoshitaka
Terada, Tohru
Shimizu, Kentaro
description Cosolvent molecular dynamics (CMD) simulations involve an MD simulation of a protein in the presence of explicit water molecules mixed with cosolvent molecules to perform hotspot detection, binding site identification, and binding energy estimation, while other existing methods (e.g., MixMD, SILCS, and MDmix) utilize small molecules that represent functional groups of compounds. However, the cosolvent selections employed in these methods differ and there are only a few cosolvents that are commonly used in these methods. In this study, we proposed a systematic method for constructing a set of cosolvents for drug discovery, termed the EXtended PRObes set construction by REpresentative Retrieval (EXPRORER). First, we extracted typical substructures from FDA-approved drugs, generated 138 cosolvent structures, and for each cosolvent molecule, we conducted CMD simulations to generate a spatial probability distribution map of cosolvent atoms (PMAP). Analyses of PMAP similarity revealed that a cosolvent pair with a PMAP similarity greater than 0.70–0.75 shared similar structural features. We present a method for the construction of a cosolvent subset that satisfies a similarity threshold for all cosolvents, and we tested the constructed sets for four proteins. To our knowledge, this is the first study to include a systematic proposal for cosolvent set construction, and thus, the EXPRORER cosolvents will provide deeper insights into ligand binding sites of various proteins.
doi_str_mv 10.1021/acs.jcim.1c00134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536466477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548431964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-12912659babb6d7f4646a496ee2162718660c28a30f11bb7161e0259317b21ea3</originalsourceid><addsrcrecordid>eNp1kc1Lw0AQxYMoWKt3jwEvHkzd2d1sut6k1g9oqbQWegub7aamJNm6uxH637vpB4jgaWZ4v3kD84LgGlAPEIZ7IW1vLYuqBxIhIPQk6EBMecQZWpwe-5iz8-DC2jVChHCGO4EdLt6nk-lw-hBOhSt0LcpwoK0uv1XtwplyfqqtM41sxXCs3Kdehrk2v6ixLpVsSmHCp20tqkLacG6LehWOhFmpaCZFqTxebRq3O3EZnOWitOrqULvB_Hn4MXiNRpOXt8HjKBKUExcB5oBZzDORZWyZ5JRR5hWmFAaGE-gzhiTuC4JygCxLgIFCOOYEkgyDEqQb3O59N0Z_Ncq6tCqsVGUpaqUbm-KYeEtGk8SjN3_QtW6Mf0ZL0T4lwBn1FNpT0mhrjcrTjSkqYbYpoLRNIfUppG0K6SEFv3K3X9kpR89_8R_LGIpe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548431964</pqid></control><display><type>article</type><title>EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation</title><source>American Chemical Society</source><creator>Yanagisawa, Keisuke ; Moriwaki, Yoshitaka ; Terada, Tohru ; Shimizu, Kentaro</creator><creatorcontrib>Yanagisawa, Keisuke ; Moriwaki, Yoshitaka ; Terada, Tohru ; Shimizu, Kentaro</creatorcontrib><description>Cosolvent molecular dynamics (CMD) simulations involve an MD simulation of a protein in the presence of explicit water molecules mixed with cosolvent molecules to perform hotspot detection, binding site identification, and binding energy estimation, while other existing methods (e.g., MixMD, SILCS, and MDmix) utilize small molecules that represent functional groups of compounds. However, the cosolvent selections employed in these methods differ and there are only a few cosolvents that are commonly used in these methods. In this study, we proposed a systematic method for constructing a set of cosolvents for drug discovery, termed the EXtended PRObes set construction by REpresentative Retrieval (EXPRORER). First, we extracted typical substructures from FDA-approved drugs, generated 138 cosolvent structures, and for each cosolvent molecule, we conducted CMD simulations to generate a spatial probability distribution map of cosolvent atoms (PMAP). Analyses of PMAP similarity revealed that a cosolvent pair with a PMAP similarity greater than 0.70–0.75 shared similar structural features. We present a method for the construction of a cosolvent subset that satisfies a similarity threshold for all cosolvents, and we tested the constructed sets for four proteins. To our knowledge, this is the first study to include a systematic proposal for cosolvent set construction, and thus, the EXPRORER cosolvents will provide deeper insights into ligand binding sites of various proteins.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c00134</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Binding sites ; Computational Chemistry ; Functional groups ; Molecular dynamics ; Proteins ; Similarity ; Simulation ; Water chemistry</subject><ispartof>Journal of chemical information and modeling, 2021-06, Vol.61 (6), p.2744-2753</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 28, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-12912659babb6d7f4646a496ee2162718660c28a30f11bb7161e0259317b21ea3</citedby><cites>FETCH-LOGICAL-a493t-12912659babb6d7f4646a496ee2162718660c28a30f11bb7161e0259317b21ea3</cites><orcidid>0000-0003-0224-0035 ; 0000-0002-7091-0646 ; 0000-0003-0448-9790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c00134$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c00134$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yanagisawa, Keisuke</creatorcontrib><creatorcontrib>Moriwaki, Yoshitaka</creatorcontrib><creatorcontrib>Terada, Tohru</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><title>EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Cosolvent molecular dynamics (CMD) simulations involve an MD simulation of a protein in the presence of explicit water molecules mixed with cosolvent molecules to perform hotspot detection, binding site identification, and binding energy estimation, while other existing methods (e.g., MixMD, SILCS, and MDmix) utilize small molecules that represent functional groups of compounds. However, the cosolvent selections employed in these methods differ and there are only a few cosolvents that are commonly used in these methods. In this study, we proposed a systematic method for constructing a set of cosolvents for drug discovery, termed the EXtended PRObes set construction by REpresentative Retrieval (EXPRORER). First, we extracted typical substructures from FDA-approved drugs, generated 138 cosolvent structures, and for each cosolvent molecule, we conducted CMD simulations to generate a spatial probability distribution map of cosolvent atoms (PMAP). Analyses of PMAP similarity revealed that a cosolvent pair with a PMAP similarity greater than 0.70–0.75 shared similar structural features. We present a method for the construction of a cosolvent subset that satisfies a similarity threshold for all cosolvents, and we tested the constructed sets for four proteins. To our knowledge, this is the first study to include a systematic proposal for cosolvent set construction, and thus, the EXPRORER cosolvents will provide deeper insights into ligand binding sites of various proteins.</description><subject>Binding sites</subject><subject>Computational Chemistry</subject><subject>Functional groups</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Water chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc1Lw0AQxYMoWKt3jwEvHkzd2d1sut6k1g9oqbQWegub7aamJNm6uxH637vpB4jgaWZ4v3kD84LgGlAPEIZ7IW1vLYuqBxIhIPQk6EBMecQZWpwe-5iz8-DC2jVChHCGO4EdLt6nk-lw-hBOhSt0LcpwoK0uv1XtwplyfqqtM41sxXCs3Kdehrk2v6ixLpVsSmHCp20tqkLacG6LehWOhFmpaCZFqTxebRq3O3EZnOWitOrqULvB_Hn4MXiNRpOXt8HjKBKUExcB5oBZzDORZWyZ5JRR5hWmFAaGE-gzhiTuC4JygCxLgIFCOOYEkgyDEqQb3O59N0Z_Ncq6tCqsVGUpaqUbm-KYeEtGk8SjN3_QtW6Mf0ZL0T4lwBn1FNpT0mhrjcrTjSkqYbYpoLRNIfUppG0K6SEFv3K3X9kpR89_8R_LGIpe</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>Yanagisawa, Keisuke</creator><creator>Moriwaki, Yoshitaka</creator><creator>Terada, Tohru</creator><creator>Shimizu, Kentaro</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0224-0035</orcidid><orcidid>https://orcid.org/0000-0002-7091-0646</orcidid><orcidid>https://orcid.org/0000-0003-0448-9790</orcidid></search><sort><creationdate>20210628</creationdate><title>EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation</title><author>Yanagisawa, Keisuke ; Moriwaki, Yoshitaka ; Terada, Tohru ; Shimizu, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-12912659babb6d7f4646a496ee2162718660c28a30f11bb7161e0259317b21ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Computational Chemistry</topic><topic>Functional groups</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanagisawa, Keisuke</creatorcontrib><creatorcontrib>Moriwaki, Yoshitaka</creatorcontrib><creatorcontrib>Terada, Tohru</creatorcontrib><creatorcontrib>Shimizu, Kentaro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanagisawa, Keisuke</au><au>Moriwaki, Yoshitaka</au><au>Terada, Tohru</au><au>Shimizu, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-06-28</date><risdate>2021</risdate><volume>61</volume><issue>6</issue><spage>2744</spage><epage>2753</epage><pages>2744-2753</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Cosolvent molecular dynamics (CMD) simulations involve an MD simulation of a protein in the presence of explicit water molecules mixed with cosolvent molecules to perform hotspot detection, binding site identification, and binding energy estimation, while other existing methods (e.g., MixMD, SILCS, and MDmix) utilize small molecules that represent functional groups of compounds. However, the cosolvent selections employed in these methods differ and there are only a few cosolvents that are commonly used in these methods. In this study, we proposed a systematic method for constructing a set of cosolvents for drug discovery, termed the EXtended PRObes set construction by REpresentative Retrieval (EXPRORER). First, we extracted typical substructures from FDA-approved drugs, generated 138 cosolvent structures, and for each cosolvent molecule, we conducted CMD simulations to generate a spatial probability distribution map of cosolvent atoms (PMAP). Analyses of PMAP similarity revealed that a cosolvent pair with a PMAP similarity greater than 0.70–0.75 shared similar structural features. We present a method for the construction of a cosolvent subset that satisfies a similarity threshold for all cosolvents, and we tested the constructed sets for four proteins. To our knowledge, this is the first study to include a systematic proposal for cosolvent set construction, and thus, the EXPRORER cosolvents will provide deeper insights into ligand binding sites of various proteins.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.1c00134</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0224-0035</orcidid><orcidid>https://orcid.org/0000-0002-7091-0646</orcidid><orcidid>https://orcid.org/0000-0003-0448-9790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-06, Vol.61 (6), p.2744-2753
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2536466477
source American Chemical Society
subjects Binding sites
Computational Chemistry
Functional groups
Molecular dynamics
Proteins
Similarity
Simulation
Water chemistry
title EXPRORER: Rational Cosolvent Set Construction Method for Cosolvent Molecular Dynamics Using Large-Scale Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXPRORER:%20Rational%20Cosolvent%20Set%20Construction%20Method%20for%20Cosolvent%20Molecular%20Dynamics%20Using%20Large-Scale%20Computation&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Yanagisawa,%20Keisuke&rft.date=2021-06-28&rft.volume=61&rft.issue=6&rft.spage=2744&rft.epage=2753&rft.pages=2744-2753&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c00134&rft_dat=%3Cproquest_cross%3E2548431964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548431964&rft_id=info:pmid/&rfr_iscdi=true