Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence

The use of internet-based query data offers a novel approach to improve disease surveillance and provides timely disease information. This paper systematically reviewed the literature on infectious disease predictions using internet-based query data and climate factors, discussed the current researc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biometeorology 2021-12, Vol.65 (12), p.2203-2214
Hauptverfasser: Zhang, Yuzhou, Bambrick, Hilary, Mengersen, Kerrie, Tong, Shilu, Hu, Wenbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2214
container_issue 12
container_start_page 2203
container_title International journal of biometeorology
container_volume 65
creator Zhang, Yuzhou
Bambrick, Hilary
Mengersen, Kerrie
Tong, Shilu
Hu, Wenbiao
description The use of internet-based query data offers a novel approach to improve disease surveillance and provides timely disease information. This paper systematically reviewed the literature on infectious disease predictions using internet-based query data and climate factors, discussed the current research progress and challenges, and provided some recommendations for future studies. We searched the relevant articles in the PubMed, Scopus, and Web of Science databases between January 2000 and December 2019. We initially included studies that used internet-based query data to predict infectious disease epidemics, then we further filtered and appraised the studies that used both internet-based query data and climate factors. In total, 129 relevant papers were included in the review. The results showed that most studies used a simple descriptive approach (n=80; 62%) to detect epidemics of influenza (including influenza-like illness (ILI)) (n=88; 68%) and dengue (n=9; 7%). Most studies (n=61; 47%) purely used internet search metrics to predict the epidemics of infectious diseases, while only 3 out of the 129 papers included both climate variables and internet-based query data. Our research shows that including internet-based query data and climate variables could better predict climate-sensitive infectious disease epidemics; however, this method has not been widely used to date. Moreover, previous studies did not sufficiently consider the spatiotemporal uncertainty of infectious diseases. Our review suggests that further research should use both internet-based query and climate data to develop predictive models for climate-sensitive infectious diseases based on spatiotemporal models.
doi_str_mv 10.1007/s00484-021-02155-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2536464389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592768575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-df0534ad02c827aa9e1f0dce63633624b4fd2954c95bee3fda4e7a9c7324d8f3</originalsourceid><addsrcrecordid>eNp9kUtLJDEUhcOgYNv6B1wFZuMmYyqPesxuaOYhCG50HdLJTROnOtWTm3bov-EvNk6NCC5chEDudw735BBy0fAvDefdFXKuesW4aF6O1kx9IotGScEaodURWXAuOOsa0Z-QU8QHXkV92y3I0z3GtKExFcgJCltbBE__7CEfqE2eujFubQHqbbG0THSXwUdXXt8ZQsJY4iNUiwCuxGmP1EeE6kNzxN_4lVqKByxQ-ehohscIf-kUKOyih22cxmkTnR1pHXhIDs7IcbAjwvn_e0nufny_W_1iN7c_r1ffbpiTWhTmA9dSWc-F60Vn7QBN4N5BK1spW6HWKngxaOUGvQaQwVsFnR1cJ4XyfZBLcjnb7vJU82Ix24gOxtEmqCGM0LJVrZL9UNHP79CHaZ9TXa5Sg-jaXne6UmKmXJ4QMwSzy_WT8sE03Ly0ZOaWTG3I_GvJqCqSswgrnDaQ36w_UD0DFuaYfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592768575</pqid></control><display><type>article</type><title>Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Yuzhou ; Bambrick, Hilary ; Mengersen, Kerrie ; Tong, Shilu ; Hu, Wenbiao</creator><creatorcontrib>Zhang, Yuzhou ; Bambrick, Hilary ; Mengersen, Kerrie ; Tong, Shilu ; Hu, Wenbiao</creatorcontrib><description>The use of internet-based query data offers a novel approach to improve disease surveillance and provides timely disease information. This paper systematically reviewed the literature on infectious disease predictions using internet-based query data and climate factors, discussed the current research progress and challenges, and provided some recommendations for future studies. We searched the relevant articles in the PubMed, Scopus, and Web of Science databases between January 2000 and December 2019. We initially included studies that used internet-based query data to predict infectious disease epidemics, then we further filtered and appraised the studies that used both internet-based query data and climate factors. In total, 129 relevant papers were included in the review. The results showed that most studies used a simple descriptive approach (n=80; 62%) to detect epidemics of influenza (including influenza-like illness (ILI)) (n=88; 68%) and dengue (n=9; 7%). Most studies (n=61; 47%) purely used internet search metrics to predict the epidemics of infectious diseases, while only 3 out of the 129 papers included both climate variables and internet-based query data. Our research shows that including internet-based query data and climate variables could better predict climate-sensitive infectious disease epidemics; however, this method has not been widely used to date. Moreover, previous studies did not sufficiently consider the spatiotemporal uncertainty of infectious diseases. Our review suggests that further research should use both internet-based query and climate data to develop predictive models for climate-sensitive infectious diseases based on spatiotemporal models.</description><identifier>ISSN: 0020-7128</identifier><identifier>EISSN: 1432-1254</identifier><identifier>DOI: 10.1007/s00484-021-02155-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Physiology ; Biological and Medical Physics ; Biophysics ; Climate change ; Climate models ; Climate prediction ; Climatic data ; Dengue fever ; Earth and Environmental Science ; Environment ; Environmental Health ; Epidemics ; Epidemiology ; Health risks ; Infectious diseases ; Influenza ; Internet ; Meteorology ; Plant Physiology ; Prediction models ; Queries ; Review Paper ; Reviews ; Systematic review ; Vector-borne diseases</subject><ispartof>International journal of biometeorology, 2021-12, Vol.65 (12), p.2203-2214</ispartof><rights>ISB 2021</rights><rights>ISB 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-df0534ad02c827aa9e1f0dce63633624b4fd2954c95bee3fda4e7a9c7324d8f3</citedby><cites>FETCH-LOGICAL-c352t-df0534ad02c827aa9e1f0dce63633624b4fd2954c95bee3fda4e7a9c7324d8f3</cites><orcidid>0000-0003-0668-8697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00484-021-02155-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00484-021-02155-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Yuzhou</creatorcontrib><creatorcontrib>Bambrick, Hilary</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><creatorcontrib>Tong, Shilu</creatorcontrib><creatorcontrib>Hu, Wenbiao</creatorcontrib><title>Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence</title><title>International journal of biometeorology</title><addtitle>Int J Biometeorol</addtitle><description>The use of internet-based query data offers a novel approach to improve disease surveillance and provides timely disease information. This paper systematically reviewed the literature on infectious disease predictions using internet-based query data and climate factors, discussed the current research progress and challenges, and provided some recommendations for future studies. We searched the relevant articles in the PubMed, Scopus, and Web of Science databases between January 2000 and December 2019. We initially included studies that used internet-based query data to predict infectious disease epidemics, then we further filtered and appraised the studies that used both internet-based query data and climate factors. In total, 129 relevant papers were included in the review. The results showed that most studies used a simple descriptive approach (n=80; 62%) to detect epidemics of influenza (including influenza-like illness (ILI)) (n=88; 68%) and dengue (n=9; 7%). Most studies (n=61; 47%) purely used internet search metrics to predict the epidemics of infectious diseases, while only 3 out of the 129 papers included both climate variables and internet-based query data. Our research shows that including internet-based query data and climate variables could better predict climate-sensitive infectious disease epidemics; however, this method has not been widely used to date. Moreover, previous studies did not sufficiently consider the spatiotemporal uncertainty of infectious diseases. Our review suggests that further research should use both internet-based query and climate data to develop predictive models for climate-sensitive infectious diseases based on spatiotemporal models.</description><subject>Animal Physiology</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Climatic data</subject><subject>Dengue fever</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Health risks</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Internet</subject><subject>Meteorology</subject><subject>Plant Physiology</subject><subject>Prediction models</subject><subject>Queries</subject><subject>Review Paper</subject><subject>Reviews</subject><subject>Systematic review</subject><subject>Vector-borne diseases</subject><issn>0020-7128</issn><issn>1432-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtLJDEUhcOgYNv6B1wFZuMmYyqPesxuaOYhCG50HdLJTROnOtWTm3bov-EvNk6NCC5chEDudw735BBy0fAvDefdFXKuesW4aF6O1kx9IotGScEaodURWXAuOOsa0Z-QU8QHXkV92y3I0z3GtKExFcgJCltbBE__7CEfqE2eujFubQHqbbG0THSXwUdXXt8ZQsJY4iNUiwCuxGmP1EeE6kNzxN_4lVqKByxQ-ehohscIf-kUKOyih22cxmkTnR1pHXhIDs7IcbAjwvn_e0nufny_W_1iN7c_r1ffbpiTWhTmA9dSWc-F60Vn7QBN4N5BK1spW6HWKngxaOUGvQaQwVsFnR1cJ4XyfZBLcjnb7vJU82Ix24gOxtEmqCGM0LJVrZL9UNHP79CHaZ9TXa5Sg-jaXne6UmKmXJ4QMwSzy_WT8sE03Ly0ZOaWTG3I_GvJqCqSswgrnDaQ36w_UD0DFuaYfA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhang, Yuzhou</creator><creator>Bambrick, Hilary</creator><creator>Mengersen, Kerrie</creator><creator>Tong, Shilu</creator><creator>Hu, Wenbiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0668-8697</orcidid></search><sort><creationdate>20211201</creationdate><title>Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence</title><author>Zhang, Yuzhou ; Bambrick, Hilary ; Mengersen, Kerrie ; Tong, Shilu ; Hu, Wenbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-df0534ad02c827aa9e1f0dce63633624b4fd2954c95bee3fda4e7a9c7324d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal Physiology</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Climatic data</topic><topic>Dengue fever</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Health risks</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Internet</topic><topic>Meteorology</topic><topic>Plant Physiology</topic><topic>Prediction models</topic><topic>Queries</topic><topic>Review Paper</topic><topic>Reviews</topic><topic>Systematic review</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuzhou</creatorcontrib><creatorcontrib>Bambrick, Hilary</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><creatorcontrib>Tong, Shilu</creatorcontrib><creatorcontrib>Hu, Wenbiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuzhou</au><au>Bambrick, Hilary</au><au>Mengersen, Kerrie</au><au>Tong, Shilu</au><au>Hu, Wenbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence</atitle><jtitle>International journal of biometeorology</jtitle><stitle>Int J Biometeorol</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>65</volume><issue>12</issue><spage>2203</spage><epage>2214</epage><pages>2203-2214</pages><issn>0020-7128</issn><eissn>1432-1254</eissn><abstract>The use of internet-based query data offers a novel approach to improve disease surveillance and provides timely disease information. This paper systematically reviewed the literature on infectious disease predictions using internet-based query data and climate factors, discussed the current research progress and challenges, and provided some recommendations for future studies. We searched the relevant articles in the PubMed, Scopus, and Web of Science databases between January 2000 and December 2019. We initially included studies that used internet-based query data to predict infectious disease epidemics, then we further filtered and appraised the studies that used both internet-based query data and climate factors. In total, 129 relevant papers were included in the review. The results showed that most studies used a simple descriptive approach (n=80; 62%) to detect epidemics of influenza (including influenza-like illness (ILI)) (n=88; 68%) and dengue (n=9; 7%). Most studies (n=61; 47%) purely used internet search metrics to predict the epidemics of infectious diseases, while only 3 out of the 129 papers included both climate variables and internet-based query data. Our research shows that including internet-based query data and climate variables could better predict climate-sensitive infectious disease epidemics; however, this method has not been widely used to date. Moreover, previous studies did not sufficiently consider the spatiotemporal uncertainty of infectious diseases. Our review suggests that further research should use both internet-based query and climate data to develop predictive models for climate-sensitive infectious diseases based on spatiotemporal models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00484-021-02155-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0668-8697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7128
ispartof International journal of biometeorology, 2021-12, Vol.65 (12), p.2203-2214
issn 0020-7128
1432-1254
language eng
recordid cdi_proquest_miscellaneous_2536464389
source Springer Nature - Complete Springer Journals
subjects Animal Physiology
Biological and Medical Physics
Biophysics
Climate change
Climate models
Climate prediction
Climatic data
Dengue fever
Earth and Environmental Science
Environment
Environmental Health
Epidemics
Epidemiology
Health risks
Infectious diseases
Influenza
Internet
Meteorology
Plant Physiology
Prediction models
Queries
Review Paper
Reviews
Systematic review
Vector-borne diseases
title Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20internet-based%20query%20and%20climate%20data%20to%20predict%20climate-sensitive%20infectious%20disease%20risks:%20a%20systematic%20review%20of%20epidemiological%20evidence&rft.jtitle=International%20journal%20of%20biometeorology&rft.au=Zhang,%20Yuzhou&rft.date=2021-12-01&rft.volume=65&rft.issue=12&rft.spage=2203&rft.epage=2214&rft.pages=2203-2214&rft.issn=0020-7128&rft.eissn=1432-1254&rft_id=info:doi/10.1007/s00484-021-02155-4&rft_dat=%3Cproquest_cross%3E2592768575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592768575&rft_id=info:pmid/&rfr_iscdi=true