Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection

Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2021-06, Vol.253 (6), p.132-132, Article 132
Hauptverfasser: Nishimura, Kazusa, Handa, Hirokazu, Mori, Naoki, Kawaura, Kanako, Kitajima, Akira, Nakazaki, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 6
container_start_page 132
container_title Planta
container_volume 253
creator Nishimura, Kazusa
Handa, Hirokazu
Mori, Naoki
Kawaura, Kanako
Kitajima, Akira
Nakazaki, Tetsuya
description Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region ( Vrn-A3a-h1 ) has recently been reported from the analysis of an emmer wheat ( Triticum turgidum L. ssp. dicoccum ) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2 , Vrn-A3a-h3 , Vrn-A3a-h4 , Vrn-A3a-h5 , Vrn-A3a-h6 , and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1 . Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum ( T . turgidum L. ssp. durum ) and bread wheat ( T. aestivum L. ssp. aestivum ) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.
doi_str_mv 10.1007/s00425-021-03646-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2535833760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535833760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkNpqbe2f6CLEuhGF2NPPiYzsxSxtiAVxHYbziQZjeROpsmMF7f95eZ6bQUX3SQh53nfBB5CPjI4YgDNlwwgeV0BZxUIJVXVvSIrJgWvOMj2NVkBlDN0ot4j73K-BSjDpnlL9oSEuutauSJ_zly8TjjdeIOBWp_n5Ptl9nGkOFqKFqfZ3zl6h8nj43Uc6K_LH9WxoBiCCy5TP9JNTMFuvHV0iuF-CtFburlxONODq-Rnb5Y1zdN0dFhWZ3wJmVjSZtv4nrwZMGT34WnfJz-_nl6dfKvOL86-nxyfV0ZKNlcGoMWeOeCtsKhE3aNhSrZcKDHU3FjZmwaRgRSqVbyprcTeDCi4EA0OXOyTg13vlOLvxeVZr302LgQcXVyy5rWo28IqKOjnF-htXNJYfrelZAtdA6pQfEeZFHNObtBT8mtM95qB3hrSO0O6GNKPhnRXQp-eqpd-7ey_yF8lBRA7IJfReO3S89v_qX0AodKcaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534809706</pqid></control><display><type>article</type><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</creator><creatorcontrib>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</creatorcontrib><description>Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region ( Vrn-A3a-h1 ) has recently been reported from the analysis of an emmer wheat ( Triticum turgidum L. ssp. dicoccum ) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2 , Vrn-A3a-h3 , Vrn-A3a-h4 , Vrn-A3a-h5 , Vrn-A3a-h6 , and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1 . Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum ( T . turgidum L. ssp. durum ) and bread wheat ( T. aestivum L. ssp. aestivum ) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03646-9</identifier><identifier>PMID: 34059984</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptability ; Agriculture ; Alleles ; Biomedical and Life Sciences ; Bread ; Cultivars ; Cultivation ; Ecology ; Ethiopia ; Flowering ; Forestry ; Genes ; Geographical distribution ; Geography ; Grain cultivation ; Haplotypes ; Life Sciences ; Original Article ; Phenotypes ; Plant Breeding ; Plant Sciences ; Polymorphism ; Polyploidy ; Sequence analysis ; Triticum ; Triticum - genetics ; Triticum dicoccum ; Wheat</subject><ispartof>Planta, 2021-06, Vol.253 (6), p.132-132, Article 132</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</citedby><cites>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</cites><orcidid>0000-0002-8381-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-021-03646-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-021-03646-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34059984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Handa, Hirokazu</creatorcontrib><creatorcontrib>Mori, Naoki</creatorcontrib><creatorcontrib>Kawaura, Kanako</creatorcontrib><creatorcontrib>Kitajima, Akira</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region ( Vrn-A3a-h1 ) has recently been reported from the analysis of an emmer wheat ( Triticum turgidum L. ssp. dicoccum ) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2 , Vrn-A3a-h3 , Vrn-A3a-h4 , Vrn-A3a-h5 , Vrn-A3a-h6 , and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1 . Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum ( T . turgidum L. ssp. durum ) and bread wheat ( T. aestivum L. ssp. aestivum ) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</description><subject>Adaptability</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Biomedical and Life Sciences</subject><subject>Bread</subject><subject>Cultivars</subject><subject>Cultivation</subject><subject>Ecology</subject><subject>Ethiopia</subject><subject>Flowering</subject><subject>Forestry</subject><subject>Genes</subject><subject>Geographical distribution</subject><subject>Geography</subject><subject>Grain cultivation</subject><subject>Haplotypes</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Polymorphism</subject><subject>Polyploidy</subject><subject>Sequence analysis</subject><subject>Triticum</subject><subject>Triticum - genetics</subject><subject>Triticum dicoccum</subject><subject>Wheat</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhkNpqbe2f6CLEuhGF2NPPiYzsxSxtiAVxHYbziQZjeROpsmMF7f95eZ6bQUX3SQh53nfBB5CPjI4YgDNlwwgeV0BZxUIJVXVvSIrJgWvOMj2NVkBlDN0ot4j73K-BSjDpnlL9oSEuutauSJ_zly8TjjdeIOBWp_n5Ptl9nGkOFqKFqfZ3zl6h8nj43Uc6K_LH9WxoBiCCy5TP9JNTMFuvHV0iuF-CtFburlxONODq-Rnb5Y1zdN0dFhWZ3wJmVjSZtv4nrwZMGT34WnfJz-_nl6dfKvOL86-nxyfV0ZKNlcGoMWeOeCtsKhE3aNhSrZcKDHU3FjZmwaRgRSqVbyprcTeDCi4EA0OXOyTg13vlOLvxeVZr302LgQcXVyy5rWo28IqKOjnF-htXNJYfrelZAtdA6pQfEeZFHNObtBT8mtM95qB3hrSO0O6GNKPhnRXQp-eqpd-7ey_yF8lBRA7IJfReO3S89v_qX0AodKcaQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nishimura, Kazusa</creator><creator>Handa, Hirokazu</creator><creator>Mori, Naoki</creator><creator>Kawaura, Kanako</creator><creator>Kitajima, Akira</creator><creator>Nakazaki, Tetsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8381-3319</orcidid></search><sort><creationdate>20210601</creationdate><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><author>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptability</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Biomedical and Life Sciences</topic><topic>Bread</topic><topic>Cultivars</topic><topic>Cultivation</topic><topic>Ecology</topic><topic>Ethiopia</topic><topic>Flowering</topic><topic>Forestry</topic><topic>Genes</topic><topic>Geographical distribution</topic><topic>Geography</topic><topic>Grain cultivation</topic><topic>Haplotypes</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Polymorphism</topic><topic>Polyploidy</topic><topic>Sequence analysis</topic><topic>Triticum</topic><topic>Triticum - genetics</topic><topic>Triticum dicoccum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Handa, Hirokazu</creatorcontrib><creatorcontrib>Mori, Naoki</creatorcontrib><creatorcontrib>Kawaura, Kanako</creatorcontrib><creatorcontrib>Kitajima, Akira</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Kazusa</au><au>Handa, Hirokazu</au><au>Mori, Naoki</au><au>Kawaura, Kanako</au><au>Kitajima, Akira</au><au>Nakazaki, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>253</volume><issue>6</issue><spage>132</spage><epage>132</epage><pages>132-132</pages><artnum>132</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region ( Vrn-A3a-h1 ) has recently been reported from the analysis of an emmer wheat ( Triticum turgidum L. ssp. dicoccum ) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2 , Vrn-A3a-h3 , Vrn-A3a-h4 , Vrn-A3a-h5 , Vrn-A3a-h6 , and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1 . Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum ( T . turgidum L. ssp. durum ) and bread wheat ( T. aestivum L. ssp. aestivum ) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34059984</pmid><doi>10.1007/s00425-021-03646-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8381-3319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2021-06, Vol.253 (6), p.132-132, Article 132
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2535833760
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adaptability
Agriculture
Alleles
Biomedical and Life Sciences
Bread
Cultivars
Cultivation
Ecology
Ethiopia
Flowering
Forestry
Genes
Geographical distribution
Geography
Grain cultivation
Haplotypes
Life Sciences
Original Article
Phenotypes
Plant Breeding
Plant Sciences
Polymorphism
Polyploidy
Sequence analysis
Triticum
Triticum - genetics
Triticum dicoccum
Wheat
title Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographical%20distribution%20and%20adaptive%20variation%20of%20VRN-A3%20alleles%20in%20worldwide%20polyploid%20wheat%20(Triticum%20spp.)%20species%20collection&rft.jtitle=Planta&rft.au=Nishimura,%20Kazusa&rft.date=2021-06-01&rft.volume=253&rft.issue=6&rft.spage=132&rft.epage=132&rft.pages=132-132&rft.artnum=132&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03646-9&rft_dat=%3Cproquest_cross%3E2535833760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534809706&rft_id=info:pmid/34059984&rfr_iscdi=true