Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection
Main conclusion The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat ( Triticum spp.), the flowering time is an important trait for successful...
Gespeichert in:
Veröffentlicht in: | Planta 2021-06, Vol.253 (6), p.132-132, Article 132 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 6 |
container_start_page | 132 |
container_title | Planta |
container_volume | 253 |
creator | Nishimura, Kazusa Handa, Hirokazu Mori, Naoki Kawaura, Kanako Kitajima, Akira Nakazaki, Tetsuya |
description | Main conclusion
The distribution of early flowering alleles of
VRN-A3
was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat.
In wheat (
Triticum
spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of
VRN-A3
with 7- and 25-bp insertions in the promoter region (
Vrn-A3a-h1
) has recently been reported from the analysis of an emmer wheat (
Triticum turgidum
L. ssp.
dicoccum
) accession, TN26. This early flowering allele of
VRN-A3
might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of
VRN-A3
in worldwide wheat collection. From sequence analysis, we identified six
VRN-A3
alleles with the 7- and 25-bp insertions, namely,
Vrn-A3a-h2
,
Vrn-A3a-h3
,
Vrn-A3a-h4
,
Vrn-A3a-h5
,
Vrn-A3a-h6
, and
Vrn-A3c-h2
from wild emmer wheat, while we identified two
VRN-A3
alleles with these insertions,
Vrn-A3a-h2
and
Vrn-A3c-h1
from cultivated tetraploid and hexaploid wheat species in addition to
Vrn-A3a-h1
. Among
VRN-A3
alleles distributed in cultivated wheat, we found that
Vrn-A3a-h2
promoted early heading, whereas
Vrn-A3c-h1
did not affect heading time. Our analysis showed that the distribution of early flowering alleles of
VRN-A3
dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of
VRN-A3
contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (
T
.
turgidum
L. ssp.
durum
) and bread wheat (
T. aestivum
L. ssp.
aestivum
) accessions with these early flowering alleles. Our findings indicated that
Vrn-A3a-h1
and
Vrn-A3a-h2
were useful for breeding of early flowering cultivars in durum and bread wheat varieties. |
doi_str_mv | 10.1007/s00425-021-03646-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2535833760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535833760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkNpqbe2f6CLEuhGF2NPPiYzsxSxtiAVxHYbziQZjeROpsmMF7f95eZ6bQUX3SQh53nfBB5CPjI4YgDNlwwgeV0BZxUIJVXVvSIrJgWvOMj2NVkBlDN0ot4j73K-BSjDpnlL9oSEuutauSJ_zly8TjjdeIOBWp_n5Ptl9nGkOFqKFqfZ3zl6h8nj43Uc6K_LH9WxoBiCCy5TP9JNTMFuvHV0iuF-CtFburlxONODq-Rnb5Y1zdN0dFhWZ3wJmVjSZtv4nrwZMGT34WnfJz-_nl6dfKvOL86-nxyfV0ZKNlcGoMWeOeCtsKhE3aNhSrZcKDHU3FjZmwaRgRSqVbyprcTeDCi4EA0OXOyTg13vlOLvxeVZr302LgQcXVyy5rWo28IqKOjnF-htXNJYfrelZAtdA6pQfEeZFHNObtBT8mtM95qB3hrSO0O6GNKPhnRXQp-eqpd-7ey_yF8lBRA7IJfReO3S89v_qX0AodKcaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534809706</pqid></control><display><type>article</type><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</creator><creatorcontrib>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</creatorcontrib><description>Main conclusion
The distribution of early flowering alleles of
VRN-A3
was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat.
In wheat (
Triticum
spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of
VRN-A3
with 7- and 25-bp insertions in the promoter region (
Vrn-A3a-h1
) has recently been reported from the analysis of an emmer wheat (
Triticum turgidum
L. ssp.
dicoccum
) accession, TN26. This early flowering allele of
VRN-A3
might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of
VRN-A3
in worldwide wheat collection. From sequence analysis, we identified six
VRN-A3
alleles with the 7- and 25-bp insertions, namely,
Vrn-A3a-h2
,
Vrn-A3a-h3
,
Vrn-A3a-h4
,
Vrn-A3a-h5
,
Vrn-A3a-h6
, and
Vrn-A3c-h2
from wild emmer wheat, while we identified two
VRN-A3
alleles with these insertions,
Vrn-A3a-h2
and
Vrn-A3c-h1
from cultivated tetraploid and hexaploid wheat species in addition to
Vrn-A3a-h1
. Among
VRN-A3
alleles distributed in cultivated wheat, we found that
Vrn-A3a-h2
promoted early heading, whereas
Vrn-A3c-h1
did not affect heading time. Our analysis showed that the distribution of early flowering alleles of
VRN-A3
dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of
VRN-A3
contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (
T
.
turgidum
L. ssp.
durum
) and bread wheat (
T. aestivum
L. ssp.
aestivum
) accessions with these early flowering alleles. Our findings indicated that
Vrn-A3a-h1
and
Vrn-A3a-h2
were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03646-9</identifier><identifier>PMID: 34059984</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptability ; Agriculture ; Alleles ; Biomedical and Life Sciences ; Bread ; Cultivars ; Cultivation ; Ecology ; Ethiopia ; Flowering ; Forestry ; Genes ; Geographical distribution ; Geography ; Grain cultivation ; Haplotypes ; Life Sciences ; Original Article ; Phenotypes ; Plant Breeding ; Plant Sciences ; Polymorphism ; Polyploidy ; Sequence analysis ; Triticum ; Triticum - genetics ; Triticum dicoccum ; Wheat</subject><ispartof>Planta, 2021-06, Vol.253 (6), p.132-132, Article 132</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</citedby><cites>FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</cites><orcidid>0000-0002-8381-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-021-03646-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-021-03646-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34059984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Handa, Hirokazu</creatorcontrib><creatorcontrib>Mori, Naoki</creatorcontrib><creatorcontrib>Kawaura, Kanako</creatorcontrib><creatorcontrib>Kitajima, Akira</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion
The distribution of early flowering alleles of
VRN-A3
was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat.
In wheat (
Triticum
spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of
VRN-A3
with 7- and 25-bp insertions in the promoter region (
Vrn-A3a-h1
) has recently been reported from the analysis of an emmer wheat (
Triticum turgidum
L. ssp.
dicoccum
) accession, TN26. This early flowering allele of
VRN-A3
might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of
VRN-A3
in worldwide wheat collection. From sequence analysis, we identified six
VRN-A3
alleles with the 7- and 25-bp insertions, namely,
Vrn-A3a-h2
,
Vrn-A3a-h3
,
Vrn-A3a-h4
,
Vrn-A3a-h5
,
Vrn-A3a-h6
, and
Vrn-A3c-h2
from wild emmer wheat, while we identified two
VRN-A3
alleles with these insertions,
Vrn-A3a-h2
and
Vrn-A3c-h1
from cultivated tetraploid and hexaploid wheat species in addition to
Vrn-A3a-h1
. Among
VRN-A3
alleles distributed in cultivated wheat, we found that
Vrn-A3a-h2
promoted early heading, whereas
Vrn-A3c-h1
did not affect heading time. Our analysis showed that the distribution of early flowering alleles of
VRN-A3
dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of
VRN-A3
contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (
T
.
turgidum
L. ssp.
durum
) and bread wheat (
T. aestivum
L. ssp.
aestivum
) accessions with these early flowering alleles. Our findings indicated that
Vrn-A3a-h1
and
Vrn-A3a-h2
were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</description><subject>Adaptability</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Biomedical and Life Sciences</subject><subject>Bread</subject><subject>Cultivars</subject><subject>Cultivation</subject><subject>Ecology</subject><subject>Ethiopia</subject><subject>Flowering</subject><subject>Forestry</subject><subject>Genes</subject><subject>Geographical distribution</subject><subject>Geography</subject><subject>Grain cultivation</subject><subject>Haplotypes</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Polymorphism</subject><subject>Polyploidy</subject><subject>Sequence analysis</subject><subject>Triticum</subject><subject>Triticum - genetics</subject><subject>Triticum dicoccum</subject><subject>Wheat</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LHTEUhkNpqbe2f6CLEuhGF2NPPiYzsxSxtiAVxHYbziQZjeROpsmMF7f95eZ6bQUX3SQh53nfBB5CPjI4YgDNlwwgeV0BZxUIJVXVvSIrJgWvOMj2NVkBlDN0ot4j73K-BSjDpnlL9oSEuutauSJ_zly8TjjdeIOBWp_n5Ptl9nGkOFqKFqfZ3zl6h8nj43Uc6K_LH9WxoBiCCy5TP9JNTMFuvHV0iuF-CtFburlxONODq-Rnb5Y1zdN0dFhWZ3wJmVjSZtv4nrwZMGT34WnfJz-_nl6dfKvOL86-nxyfV0ZKNlcGoMWeOeCtsKhE3aNhSrZcKDHU3FjZmwaRgRSqVbyprcTeDCi4EA0OXOyTg13vlOLvxeVZr302LgQcXVyy5rWo28IqKOjnF-htXNJYfrelZAtdA6pQfEeZFHNObtBT8mtM95qB3hrSO0O6GNKPhnRXQp-eqpd-7ey_yF8lBRA7IJfReO3S89v_qX0AodKcaQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nishimura, Kazusa</creator><creator>Handa, Hirokazu</creator><creator>Mori, Naoki</creator><creator>Kawaura, Kanako</creator><creator>Kitajima, Akira</creator><creator>Nakazaki, Tetsuya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8381-3319</orcidid></search><sort><creationdate>20210601</creationdate><title>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</title><author>Nishimura, Kazusa ; Handa, Hirokazu ; Mori, Naoki ; Kawaura, Kanako ; Kitajima, Akira ; Nakazaki, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c008ab1e0283da635bac16482363f52cd4bc7aa1043686275d4abcfa32337af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptability</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Biomedical and Life Sciences</topic><topic>Bread</topic><topic>Cultivars</topic><topic>Cultivation</topic><topic>Ecology</topic><topic>Ethiopia</topic><topic>Flowering</topic><topic>Forestry</topic><topic>Genes</topic><topic>Geographical distribution</topic><topic>Geography</topic><topic>Grain cultivation</topic><topic>Haplotypes</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Polymorphism</topic><topic>Polyploidy</topic><topic>Sequence analysis</topic><topic>Triticum</topic><topic>Triticum - genetics</topic><topic>Triticum dicoccum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Kazusa</creatorcontrib><creatorcontrib>Handa, Hirokazu</creatorcontrib><creatorcontrib>Mori, Naoki</creatorcontrib><creatorcontrib>Kawaura, Kanako</creatorcontrib><creatorcontrib>Kitajima, Akira</creatorcontrib><creatorcontrib>Nakazaki, Tetsuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Kazusa</au><au>Handa, Hirokazu</au><au>Mori, Naoki</au><au>Kawaura, Kanako</au><au>Kitajima, Akira</au><au>Nakazaki, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>253</volume><issue>6</issue><spage>132</spage><epage>132</epage><pages>132-132</pages><artnum>132</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion
The distribution of early flowering alleles of
VRN-A3
was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat.
In wheat (
Triticum
spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of
VRN-A3
with 7- and 25-bp insertions in the promoter region (
Vrn-A3a-h1
) has recently been reported from the analysis of an emmer wheat (
Triticum turgidum
L. ssp.
dicoccum
) accession, TN26. This early flowering allele of
VRN-A3
might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of
VRN-A3
in worldwide wheat collection. From sequence analysis, we identified six
VRN-A3
alleles with the 7- and 25-bp insertions, namely,
Vrn-A3a-h2
,
Vrn-A3a-h3
,
Vrn-A3a-h4
,
Vrn-A3a-h5
,
Vrn-A3a-h6
, and
Vrn-A3c-h2
from wild emmer wheat, while we identified two
VRN-A3
alleles with these insertions,
Vrn-A3a-h2
and
Vrn-A3c-h1
from cultivated tetraploid and hexaploid wheat species in addition to
Vrn-A3a-h1
. Among
VRN-A3
alleles distributed in cultivated wheat, we found that
Vrn-A3a-h2
promoted early heading, whereas
Vrn-A3c-h1
did not affect heading time. Our analysis showed that the distribution of early flowering alleles of
VRN-A3
dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of
VRN-A3
contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (
T
.
turgidum
L. ssp.
durum
) and bread wheat (
T. aestivum
L. ssp.
aestivum
) accessions with these early flowering alleles. Our findings indicated that
Vrn-A3a-h1
and
Vrn-A3a-h2
were useful for breeding of early flowering cultivars in durum and bread wheat varieties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34059984</pmid><doi>10.1007/s00425-021-03646-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8381-3319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2021-06, Vol.253 (6), p.132-132, Article 132 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2535833760 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adaptability Agriculture Alleles Biomedical and Life Sciences Bread Cultivars Cultivation Ecology Ethiopia Flowering Forestry Genes Geographical distribution Geography Grain cultivation Haplotypes Life Sciences Original Article Phenotypes Plant Breeding Plant Sciences Polymorphism Polyploidy Sequence analysis Triticum Triticum - genetics Triticum dicoccum Wheat |
title | Geographical distribution and adaptive variation of VRN-A3 alleles in worldwide polyploid wheat (Triticum spp.) species collection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographical%20distribution%20and%20adaptive%20variation%20of%20VRN-A3%20alleles%20in%20worldwide%20polyploid%20wheat%20(Triticum%20spp.)%20species%20collection&rft.jtitle=Planta&rft.au=Nishimura,%20Kazusa&rft.date=2021-06-01&rft.volume=253&rft.issue=6&rft.spage=132&rft.epage=132&rft.pages=132-132&rft.artnum=132&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03646-9&rft_dat=%3Cproquest_cross%3E2535833760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534809706&rft_id=info:pmid/34059984&rfr_iscdi=true |