In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice

The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2021-09, Vol.203 (7), p.4161-4171
Hauptverfasser: Ruiz, M. J., Zbrun, M. V., Signorini, M. L., Zimmermann, J. A., Soto, L. P., Rosmini, M. R., Frizzo, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4171
container_issue 7
container_start_page 4161
container_title Archives of microbiology
container_volume 203
creator Ruiz, M. J.
Zbrun, M. V.
Signorini, M. L.
Zimmermann, J. A.
Soto, L. P.
Rosmini, M. R.
Frizzo, L. S.
description The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log 10 CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli . Four groups were administered once with different C. coli strains (DSPV458: 8.49 log 10 CFU; DSPV567: 8.09 log 10 CFU; DSPV570: 8.46 log 10 CFU; DSPV541: 8.86 log 10 CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.
doi_str_mv 10.1007/s00203-021-02385-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2535829900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560486604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6ffb0baa1f15d10964517605b2a86bd354fa76ae0d962a35dbb9e57c1bc529b83</originalsourceid><addsrcrecordid>eNqNkU2L1jAUhYMozuvoH3AVcCNI9SZp0nQp9WvgBQf8wF1J0nTI0CY1SUfGhb_d9K0ouBAXuQmX5xxOOAg9JvCcADQvEgAFVgEl5TDJK34HHUjNaAUN_XIXHYABrWTL2Bl6kNI1AKFSyvvojNUgCGX0gH5ceHzjcgw4mWitd_4KKz9gt61vAjZhCt59V9kFjxc3hYznMNgJhxEflclBK-OmaU14mZTPKq4zPl7yk0en5uV22ohs4-bk8KsPl59xzeXmPztjH6J7o5qSffTrPkef3rz-2L2rju_fXnQvj5VhrciVGEcNWikyEj4QaEXNSSOAa6qk0APj9agaoSwMraCK8UHr1vLGEG04bbVk5-jp7rvE8HW1KfezS8ZOJbMNa-opZ1zStgUo6JO_0OuwRl_SFUpALUUZhaI7ZWJIKdqxX6KbVbztCfRbO_3eTl_a6U_t9LyInu2ib1aHMRlnvbG_hQAguGgkEeUFpNDy_-nO5VNHXVh9LlK2S1PB_ZWNf_7wj3g_AWLbsME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560486604</pqid></control><display><type>article</type><title>In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ruiz, M. J. ; Zbrun, M. V. ; Signorini, M. L. ; Zimmermann, J. A. ; Soto, L. P. ; Rosmini, M. R. ; Frizzo, L. S.</creator><creatorcontrib>Ruiz, M. J. ; Zbrun, M. V. ; Signorini, M. L. ; Zimmermann, J. A. ; Soto, L. P. ; Rosmini, M. R. ; Frizzo, L. S.</creatorcontrib><description>The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log 10 CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli . Four groups were administered once with different C. coli strains (DSPV458: 8.49 log 10 CFU; DSPV567: 8.09 log 10 CFU; DSPV570: 8.46 log 10 CFU; DSPV541: 8.86 log 10 CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-021-02385-5</identifier><identifier>PMID: 34061232</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal models ; Animals ; Antibacterial activity ; Antibiotics ; Antiinfectives and antibacterials ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Campylobacter ; Campylobacter coli ; Cecum ; Cell Biology ; Colonization ; Drinking water ; Ecology ; Feces ; Gastrointestinal tract ; In vivo methods and tests ; Lactobacilli ; Lactobacillus plantarum ; Life Sciences ; Life Sciences &amp; Biomedicine ; Lodging ; Microbial Ecology ; Microbiology ; Microbiota ; Microorganisms ; Original Paper ; Pathogens ; Pork ; Probiotics ; Science &amp; Technology ; Strains (organisms)</subject><ispartof>Archives of microbiology, 2021-09, Vol.203 (7), p.4161-4171</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000656781600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c396t-6ffb0baa1f15d10964517605b2a86bd354fa76ae0d962a35dbb9e57c1bc529b83</citedby><cites>FETCH-LOGICAL-c396t-6ffb0baa1f15d10964517605b2a86bd354fa76ae0d962a35dbb9e57c1bc529b83</cites><orcidid>0000-0002-4354-4564 ; 0000-0001-6537-8782 ; 0000-0002-4171-411X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-021-02385-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-021-02385-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ruiz, M. J.</creatorcontrib><creatorcontrib>Zbrun, M. V.</creatorcontrib><creatorcontrib>Signorini, M. L.</creatorcontrib><creatorcontrib>Zimmermann, J. A.</creatorcontrib><creatorcontrib>Soto, L. P.</creatorcontrib><creatorcontrib>Rosmini, M. R.</creatorcontrib><creatorcontrib>Frizzo, L. S.</creatorcontrib><title>In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>ARCH MICROBIOL</addtitle><description>The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log 10 CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli . Four groups were administered once with different C. coli strains (DSPV458: 8.49 log 10 CFU; DSPV567: 8.09 log 10 CFU; DSPV570: 8.46 log 10 CFU; DSPV541: 8.86 log 10 CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Campylobacter</subject><subject>Campylobacter coli</subject><subject>Cecum</subject><subject>Cell Biology</subject><subject>Colonization</subject><subject>Drinking water</subject><subject>Ecology</subject><subject>Feces</subject><subject>Gastrointestinal tract</subject><subject>In vivo methods and tests</subject><subject>Lactobacilli</subject><subject>Lactobacillus plantarum</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lodging</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>Pork</subject><subject>Probiotics</subject><subject>Science &amp; Technology</subject><subject>Strains (organisms)</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2L1jAUhYMozuvoH3AVcCNI9SZp0nQp9WvgBQf8wF1J0nTI0CY1SUfGhb_d9K0ouBAXuQmX5xxOOAg9JvCcADQvEgAFVgEl5TDJK34HHUjNaAUN_XIXHYABrWTL2Bl6kNI1AKFSyvvojNUgCGX0gH5ceHzjcgw4mWitd_4KKz9gt61vAjZhCt59V9kFjxc3hYznMNgJhxEflclBK-OmaU14mZTPKq4zPl7yk0en5uV22ohs4-bk8KsPl59xzeXmPztjH6J7o5qSffTrPkef3rz-2L2rju_fXnQvj5VhrciVGEcNWikyEj4QaEXNSSOAa6qk0APj9agaoSwMraCK8UHr1vLGEG04bbVk5-jp7rvE8HW1KfezS8ZOJbMNa-opZ1zStgUo6JO_0OuwRl_SFUpALUUZhaI7ZWJIKdqxX6KbVbztCfRbO_3eTl_a6U_t9LyInu2ib1aHMRlnvbG_hQAguGgkEeUFpNDy_-nO5VNHXVh9LlK2S1PB_ZWNf_7wj3g_AWLbsME</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ruiz, M. J.</creator><creator>Zbrun, M. V.</creator><creator>Signorini, M. L.</creator><creator>Zimmermann, J. A.</creator><creator>Soto, L. P.</creator><creator>Rosmini, M. R.</creator><creator>Frizzo, L. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4354-4564</orcidid><orcidid>https://orcid.org/0000-0001-6537-8782</orcidid><orcidid>https://orcid.org/0000-0002-4171-411X</orcidid></search><sort><creationdate>20210901</creationdate><title>In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice</title><author>Ruiz, M. J. ; Zbrun, M. V. ; Signorini, M. L. ; Zimmermann, J. A. ; Soto, L. P. ; Rosmini, M. R. ; Frizzo, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6ffb0baa1f15d10964517605b2a86bd354fa76ae0d962a35dbb9e57c1bc529b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Campylobacter</topic><topic>Campylobacter coli</topic><topic>Cecum</topic><topic>Cell Biology</topic><topic>Colonization</topic><topic>Drinking water</topic><topic>Ecology</topic><topic>Feces</topic><topic>Gastrointestinal tract</topic><topic>In vivo methods and tests</topic><topic>Lactobacilli</topic><topic>Lactobacillus plantarum</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lodging</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>Pork</topic><topic>Probiotics</topic><topic>Science &amp; Technology</topic><topic>Strains (organisms)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz, M. J.</creatorcontrib><creatorcontrib>Zbrun, M. V.</creatorcontrib><creatorcontrib>Signorini, M. L.</creatorcontrib><creatorcontrib>Zimmermann, J. A.</creatorcontrib><creatorcontrib>Soto, L. P.</creatorcontrib><creatorcontrib>Rosmini, M. R.</creatorcontrib><creatorcontrib>Frizzo, L. S.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz, M. J.</au><au>Zbrun, M. V.</au><au>Signorini, M. L.</au><au>Zimmermann, J. A.</au><au>Soto, L. P.</au><au>Rosmini, M. R.</au><au>Frizzo, L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><stitle>ARCH MICROBIOL</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>203</volume><issue>7</issue><spage>4161</spage><epage>4171</epage><pages>4161-4171</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log 10 CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli . Four groups were administered once with different C. coli strains (DSPV458: 8.49 log 10 CFU; DSPV567: 8.09 log 10 CFU; DSPV570: 8.46 log 10 CFU; DSPV541: 8.86 log 10 CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34061232</pmid><doi>10.1007/s00203-021-02385-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4354-4564</orcidid><orcidid>https://orcid.org/0000-0001-6537-8782</orcidid><orcidid>https://orcid.org/0000-0002-4171-411X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2021-09, Vol.203 (7), p.4161-4171
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_2535829900
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Animal models
Animals
Antibacterial activity
Antibiotics
Antiinfectives and antibacterials
Biochemistry
Biomedical and Life Sciences
Biotechnology
Campylobacter
Campylobacter coli
Cecum
Cell Biology
Colonization
Drinking water
Ecology
Feces
Gastrointestinal tract
In vivo methods and tests
Lactobacilli
Lactobacillus plantarum
Life Sciences
Life Sciences & Biomedicine
Lodging
Microbial Ecology
Microbiology
Microbiota
Microorganisms
Original Paper
Pathogens
Pork
Probiotics
Science & Technology
Strains (organisms)
title In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20screening%20and%20in%20vivo%20colonization%20pilot%20model%20of%20Lactobacillus%20plantarum%20LP5%20and%20Campylobacter%20coli%20DSPV%20458%20in%20mice&rft.jtitle=Archives%20of%20microbiology&rft.au=Ruiz,%20M.%20J.&rft.date=2021-09-01&rft.volume=203&rft.issue=7&rft.spage=4161&rft.epage=4171&rft.pages=4161-4171&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-021-02385-5&rft_dat=%3Cproquest_cross%3E2560486604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560486604&rft_id=info:pmid/34061232&rfr_iscdi=true