Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images

Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2021-08, Vol.169, p.112542-112542, Article 112542
Hauptverfasser: Andriolo, Umberto, Gonçalves, Gil, Rangel-Buitrago, Nelson, Paterni, Marco, Bessa, Filipa, Gonçalves, Luisa M.S., Sobral, Paula, Bini, Monica, Duarte, Diogo, Fontán-Bouzas, Ángela, Gonçalves, Diogo, Kataoka, Tomoya, Luppichini, Marco, Pinto, Luis, Topouzelis, Konstantinos, Vélez-Mendoza, Anubis, Merlino, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112542
container_issue
container_start_page 112542
container_title Marine pollution bulletin
container_volume 169
creator Andriolo, Umberto
Gonçalves, Gil
Rangel-Buitrago, Nelson
Paterni, Marco
Bessa, Filipa
Gonçalves, Luisa M.S.
Sobral, Paula
Bini, Monica
Duarte, Diogo
Fontán-Bouzas, Ángela
Gonçalves, Diogo
Kataoka, Tomoya
Luppichini, Marco
Pinto, Luis
Topouzelis, Konstantinos
Vélez-Mendoza, Anubis
Merlino, Silvia
description Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images collected at two beaches. The coefficient of concordance (W) among operators varied between 0.5 and 0.7, depending on the litter parameter (type, material and colour) considered. Highest agreement was obtained for the type of items marked on the highest resolution image, among experts in litter surveys (W = 0.86), and within territorial subgroups (W = 0.85). Therefore, for a detailed categorization of litter on the environment, the MS should be performed by experienced and local operators, familiar with the most common type of litter present in the target area. This work provides insights for future operational improvements and optimizations of UAS-based images analysis to survey environmental pollution. •Unmanned aerial systems allow categorization of macro-litter on the environment.•Sixteen researchers with different expertise marked macro-litter on drone images.•Best agreement in marking and classifying litter items among experts in litter survey•Familiarity with most common litter items (i.e., plastic) was essential in the test.•Zoom factor in screening the image is fundamental for results accuracy.
doi_str_mv 10.1016/j.marpolbul.2021.112542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2535110363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X21005762</els_id><sourcerecordid>2564174379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a4985c1066b499dfe014ffbd91aede0c3ba1dff53bbe3eddff7392fd535a2ace3</originalsourceid><addsrcrecordid>eNqFkUtLBDEMx4souD4-gwUvXmbtYx6Ot8U3LHhR8FY6bbp2nWnHdlbw2xtZ8eDFU0LyS_gnf0JOOJtzxuvz9XzQaYx9t-nnggk-51xUpdghM37RtIWUtdwlM8ZEVUhRv-yTg5zXjLFGNHxGVtcpBsjUxUR7P02Q6KDH0YfVJV0E6gNWijhC0hMSJgYTk9XBAJ0gT9hHPL0hTjvQ5hUs9RMMmcZANSSve-oHvYJ8RPac7jMc_8RD8nx783R1Xywf7x6uFsvCyKaeCl22F5XhrK67sm2tA8ZL5zrbcg0WmJGd5ta5SnYdSLCYNrIVzlay0kIbkIfkbLt3TPF9gxLV4LOBvtcB4iYrgSTnDJ-C6OkfdB03KaA6pOqSN6VsWqSaLWVSzDmBU2PCk9Kn4kx9G6DW6tcA9W2A2hqAk4vtJOC9Hx6SysYDvs76BGZSNvp_d3wB3P2VRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564174379</pqid></control><display><type>article</type><title>Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images</title><source>Elsevier ScienceDirect Journals</source><creator>Andriolo, Umberto ; Gonçalves, Gil ; Rangel-Buitrago, Nelson ; Paterni, Marco ; Bessa, Filipa ; Gonçalves, Luisa M.S. ; Sobral, Paula ; Bini, Monica ; Duarte, Diogo ; Fontán-Bouzas, Ángela ; Gonçalves, Diogo ; Kataoka, Tomoya ; Luppichini, Marco ; Pinto, Luis ; Topouzelis, Konstantinos ; Vélez-Mendoza, Anubis ; Merlino, Silvia</creator><creatorcontrib>Andriolo, Umberto ; Gonçalves, Gil ; Rangel-Buitrago, Nelson ; Paterni, Marco ; Bessa, Filipa ; Gonçalves, Luisa M.S. ; Sobral, Paula ; Bini, Monica ; Duarte, Diogo ; Fontán-Bouzas, Ángela ; Gonçalves, Diogo ; Kataoka, Tomoya ; Luppichini, Marco ; Pinto, Luis ; Topouzelis, Konstantinos ; Vélez-Mendoza, Anubis ; Merlino, Silvia</creatorcontrib><description>Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images collected at two beaches. The coefficient of concordance (W) among operators varied between 0.5 and 0.7, depending on the litter parameter (type, material and colour) considered. Highest agreement was obtained for the type of items marked on the highest resolution image, among experts in litter surveys (W = 0.86), and within territorial subgroups (W = 0.85). Therefore, for a detailed categorization of litter on the environment, the MS should be performed by experienced and local operators, familiar with the most common type of litter present in the target area. This work provides insights for future operational improvements and optimizations of UAS-based images analysis to survey environmental pollution. •Unmanned aerial systems allow categorization of macro-litter on the environment.•Sixteen researchers with different expertise marked macro-litter on drone images.•Best agreement in marking and classifying litter items among experts in litter survey•Familiarity with most common litter items (i.e., plastic) was essential in the test.•Zoom factor in screening the image is fundamental for results accuracy.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2021.112542</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Coastal pollution ; Colour ; Drone aircraft ; Litter ; Operators ; Plastics ; Polls &amp; surveys ; Pollution surveys ; Remote sensing ; Subgroups ; Surveying ; Surveys ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Waste management</subject><ispartof>Marine pollution bulletin, 2021-08, Vol.169, p.112542-112542, Article 112542</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a4985c1066b499dfe014ffbd91aede0c3ba1dff53bbe3eddff7392fd535a2ace3</citedby><cites>FETCH-LOGICAL-c376t-a4985c1066b499dfe014ffbd91aede0c3ba1dff53bbe3eddff7392fd535a2ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025326X21005762$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Andriolo, Umberto</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Rangel-Buitrago, Nelson</creatorcontrib><creatorcontrib>Paterni, Marco</creatorcontrib><creatorcontrib>Bessa, Filipa</creatorcontrib><creatorcontrib>Gonçalves, Luisa M.S.</creatorcontrib><creatorcontrib>Sobral, Paula</creatorcontrib><creatorcontrib>Bini, Monica</creatorcontrib><creatorcontrib>Duarte, Diogo</creatorcontrib><creatorcontrib>Fontán-Bouzas, Ángela</creatorcontrib><creatorcontrib>Gonçalves, Diogo</creatorcontrib><creatorcontrib>Kataoka, Tomoya</creatorcontrib><creatorcontrib>Luppichini, Marco</creatorcontrib><creatorcontrib>Pinto, Luis</creatorcontrib><creatorcontrib>Topouzelis, Konstantinos</creatorcontrib><creatorcontrib>Vélez-Mendoza, Anubis</creatorcontrib><creatorcontrib>Merlino, Silvia</creatorcontrib><title>Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images</title><title>Marine pollution bulletin</title><description>Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images collected at two beaches. The coefficient of concordance (W) among operators varied between 0.5 and 0.7, depending on the litter parameter (type, material and colour) considered. Highest agreement was obtained for the type of items marked on the highest resolution image, among experts in litter surveys (W = 0.86), and within territorial subgroups (W = 0.85). Therefore, for a detailed categorization of litter on the environment, the MS should be performed by experienced and local operators, familiar with the most common type of litter present in the target area. This work provides insights for future operational improvements and optimizations of UAS-based images analysis to survey environmental pollution. •Unmanned aerial systems allow categorization of macro-litter on the environment.•Sixteen researchers with different expertise marked macro-litter on drone images.•Best agreement in marking and classifying litter items among experts in litter survey•Familiarity with most common litter items (i.e., plastic) was essential in the test.•Zoom factor in screening the image is fundamental for results accuracy.</description><subject>Coastal pollution</subject><subject>Colour</subject><subject>Drone aircraft</subject><subject>Litter</subject><subject>Operators</subject><subject>Plastics</subject><subject>Polls &amp; surveys</subject><subject>Pollution surveys</subject><subject>Remote sensing</subject><subject>Subgroups</subject><subject>Surveying</subject><subject>Surveys</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Waste management</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLBDEMx4souD4-gwUvXmbtYx6Ot8U3LHhR8FY6bbp2nWnHdlbw2xtZ8eDFU0LyS_gnf0JOOJtzxuvz9XzQaYx9t-nnggk-51xUpdghM37RtIWUtdwlM8ZEVUhRv-yTg5zXjLFGNHxGVtcpBsjUxUR7P02Q6KDH0YfVJV0E6gNWijhC0hMSJgYTk9XBAJ0gT9hHPL0hTjvQ5hUs9RMMmcZANSSve-oHvYJ8RPac7jMc_8RD8nx783R1Xywf7x6uFsvCyKaeCl22F5XhrK67sm2tA8ZL5zrbcg0WmJGd5ta5SnYdSLCYNrIVzlay0kIbkIfkbLt3TPF9gxLV4LOBvtcB4iYrgSTnDJ-C6OkfdB03KaA6pOqSN6VsWqSaLWVSzDmBU2PCk9Kn4kx9G6DW6tcA9W2A2hqAk4vtJOC9Hx6SysYDvs76BGZSNvp_d3wB3P2VRQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Andriolo, Umberto</creator><creator>Gonçalves, Gil</creator><creator>Rangel-Buitrago, Nelson</creator><creator>Paterni, Marco</creator><creator>Bessa, Filipa</creator><creator>Gonçalves, Luisa M.S.</creator><creator>Sobral, Paula</creator><creator>Bini, Monica</creator><creator>Duarte, Diogo</creator><creator>Fontán-Bouzas, Ángela</creator><creator>Gonçalves, Diogo</creator><creator>Kataoka, Tomoya</creator><creator>Luppichini, Marco</creator><creator>Pinto, Luis</creator><creator>Topouzelis, Konstantinos</creator><creator>Vélez-Mendoza, Anubis</creator><creator>Merlino, Silvia</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202108</creationdate><title>Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images</title><author>Andriolo, Umberto ; Gonçalves, Gil ; Rangel-Buitrago, Nelson ; Paterni, Marco ; Bessa, Filipa ; Gonçalves, Luisa M.S. ; Sobral, Paula ; Bini, Monica ; Duarte, Diogo ; Fontán-Bouzas, Ángela ; Gonçalves, Diogo ; Kataoka, Tomoya ; Luppichini, Marco ; Pinto, Luis ; Topouzelis, Konstantinos ; Vélez-Mendoza, Anubis ; Merlino, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a4985c1066b499dfe014ffbd91aede0c3ba1dff53bbe3eddff7392fd535a2ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coastal pollution</topic><topic>Colour</topic><topic>Drone aircraft</topic><topic>Litter</topic><topic>Operators</topic><topic>Plastics</topic><topic>Polls &amp; surveys</topic><topic>Pollution surveys</topic><topic>Remote sensing</topic><topic>Subgroups</topic><topic>Surveying</topic><topic>Surveys</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andriolo, Umberto</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Rangel-Buitrago, Nelson</creatorcontrib><creatorcontrib>Paterni, Marco</creatorcontrib><creatorcontrib>Bessa, Filipa</creatorcontrib><creatorcontrib>Gonçalves, Luisa M.S.</creatorcontrib><creatorcontrib>Sobral, Paula</creatorcontrib><creatorcontrib>Bini, Monica</creatorcontrib><creatorcontrib>Duarte, Diogo</creatorcontrib><creatorcontrib>Fontán-Bouzas, Ángela</creatorcontrib><creatorcontrib>Gonçalves, Diogo</creatorcontrib><creatorcontrib>Kataoka, Tomoya</creatorcontrib><creatorcontrib>Luppichini, Marco</creatorcontrib><creatorcontrib>Pinto, Luis</creatorcontrib><creatorcontrib>Topouzelis, Konstantinos</creatorcontrib><creatorcontrib>Vélez-Mendoza, Anubis</creatorcontrib><creatorcontrib>Merlino, Silvia</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andriolo, Umberto</au><au>Gonçalves, Gil</au><au>Rangel-Buitrago, Nelson</au><au>Paterni, Marco</au><au>Bessa, Filipa</au><au>Gonçalves, Luisa M.S.</au><au>Sobral, Paula</au><au>Bini, Monica</au><au>Duarte, Diogo</au><au>Fontán-Bouzas, Ángela</au><au>Gonçalves, Diogo</au><au>Kataoka, Tomoya</au><au>Luppichini, Marco</au><au>Pinto, Luis</au><au>Topouzelis, Konstantinos</au><au>Vélez-Mendoza, Anubis</au><au>Merlino, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images</atitle><jtitle>Marine pollution bulletin</jtitle><date>2021-08</date><risdate>2021</risdate><volume>169</volume><spage>112542</spage><epage>112542</epage><pages>112542-112542</pages><artnum>112542</artnum><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images collected at two beaches. The coefficient of concordance (W) among operators varied between 0.5 and 0.7, depending on the litter parameter (type, material and colour) considered. Highest agreement was obtained for the type of items marked on the highest resolution image, among experts in litter surveys (W = 0.86), and within territorial subgroups (W = 0.85). Therefore, for a detailed categorization of litter on the environment, the MS should be performed by experienced and local operators, familiar with the most common type of litter present in the target area. This work provides insights for future operational improvements and optimizations of UAS-based images analysis to survey environmental pollution. •Unmanned aerial systems allow categorization of macro-litter on the environment.•Sixteen researchers with different expertise marked macro-litter on drone images.•Best agreement in marking and classifying litter items among experts in litter survey•Familiarity with most common litter items (i.e., plastic) was essential in the test.•Zoom factor in screening the image is fundamental for results accuracy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpolbul.2021.112542</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2021-08, Vol.169, p.112542-112542, Article 112542
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_2535110363
source Elsevier ScienceDirect Journals
subjects Coastal pollution
Colour
Drone aircraft
Litter
Operators
Plastics
Polls & surveys
Pollution surveys
Remote sensing
Subgroups
Surveying
Surveys
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Waste management
title Drones for litter mapping: An inter-operator concordance test in marking beached items on aerial images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drones%20for%20litter%20mapping:%20An%20inter-operator%20concordance%20test%20in%20marking%20beached%20items%20on%20aerial%20images&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Andriolo,%20Umberto&rft.date=2021-08&rft.volume=169&rft.spage=112542&rft.epage=112542&rft.pages=112542-112542&rft.artnum=112542&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2021.112542&rft_dat=%3Cproquest_cross%3E2564174379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564174379&rft_id=info:pmid/&rft_els_id=S0025326X21005762&rfr_iscdi=true