Novel extraction chemistry and alternative amplification strategies for use with rootless hair shafts

Rootless hair shafts are often considered unsuitable for STR genotyping due to the known high failure rate. The same samples can be reliably processed with mitochondrial sequencing. However, the minimal discriminatory power of widely implemented control region mitochondrial sequencing techniques lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forensic sciences 2021-09, Vol.66 (5), p.1929-1936
Hauptverfasser: Gutierrez, Ryan, LaRue, Bobby, Houston, Rachel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rootless hair shafts are often considered unsuitable for STR genotyping due to the known high failure rate. The same samples can be reliably processed with mitochondrial sequencing. However, the minimal discriminatory power of widely implemented control region mitochondrial sequencing techniques limits its utility in some forensic casework. In this research, multiple variables were tested to provide information on rootless hair shaft sample genotyping success. Results showed external decontamination procedures decreased drop‐in alleles but also greatly reduced profile recovery. The novel InnoXtract™ chemistry was comparable to automated EZ1 DNA Investigator extraction. With thoroughly decontaminated hairs, InnoTyper® 21 amplification generated random match probabilities higher than STR chemistry in 71.875% of samples and 18.75% of samples benefitted from the use of InnoTyper® 21 amplification compared with estimated mtDNA profile rarity. Compared with the capillary electrophoresis‐based amplification chemistries tested, the ForenSeq™ DNA Signature Prep chemistry paired with massively parallel sequencing was the most discriminatory amplification strategy tested.
ISSN:0022-1198
1556-4029
DOI:10.1111/1556-4029.14763