Invariant descriptors for 3-D object recognition and pose

Invariant descriptors are shape descriptors that are unaffected by object pose, by perspective projection, or by the intrinsic parameters of the camera. These descriptors can be constructed using the methods of invariant theory, which are briefly surveyed. A range of applications of invariant descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1991-10, Vol.13 (10), p.971-991
Hauptverfasser: FORSYTH, D, MUNDY, J. L, ZISSERMAN, A, COELHO, C, HELLER, A, ROTHWELL, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue 10
container_start_page 971
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 13
creator FORSYTH, D
MUNDY, J. L
ZISSERMAN, A
COELHO, C
HELLER, A
ROTHWELL, C
description Invariant descriptors are shape descriptors that are unaffected by object pose, by perspective projection, or by the intrinsic parameters of the camera. These descriptors can be constructed using the methods of invariant theory, which are briefly surveyed. A range of applications of invariant descriptors in 3-D model-based vision is demonstrated. First, a model-based vision system that recognizes curved plane objects irrespective of their pose is demonstrated. Curves are not reduced to polyhedral approximations but are handled as objects in their own right. Models are generated directly from image data. Once objects have been recognized, their pose can be computed, Invariant descriptors for 3-D object with plane faces are described. All these ideas are demonstrated using images of real scenes. The stability of a range of invariant descriptors to measurement error is treated in detail. (I.E.)
doi_str_mv 10.1109/34.99233
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_25350652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25350652</sourcerecordid><originalsourceid>FETCH-LOGICAL-p213t-4968faa8151df002b8215415dd2837974d3ca50c0ada97c1389f20c5f4a7f3c93</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMoOFbBT8hC3E1NcpOZZCn1VSi40fVwm4ekTJMxmQr-vQW7OpvDOYTccrbknJkHkEtjBMAZabgB04ICc04axjvRai30JbmqdccYl4pBQ8w6_WCJmGbqfLUlTnMulYZcKLRPNG933s60eJu_UpxjThSTo1Ou_ppcBByrvzlxQT5fnj9Wb-3m_XW9ety0k-Awt9J0OiBqrrgLjImtFlxJrpwTGnrTSwcWFbMMHZrectAmCGZVkNgHsAYW5P6_O5X8ffB1HvaxWj-OmHw-1EEoUKxT4ijenUSsFsdQMNlYh6nEPZbf4TiVSnTwBzrtVEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25350652</pqid></control><display><type>article</type><title>Invariant descriptors for 3-D object recognition and pose</title><source>IEEE Xplore</source><creator>FORSYTH, D ; MUNDY, J. L ; ZISSERMAN, A ; COELHO, C ; HELLER, A ; ROTHWELL, C</creator><creatorcontrib>FORSYTH, D ; MUNDY, J. L ; ZISSERMAN, A ; COELHO, C ; HELLER, A ; ROTHWELL, C</creatorcontrib><description>Invariant descriptors are shape descriptors that are unaffected by object pose, by perspective projection, or by the intrinsic parameters of the camera. These descriptors can be constructed using the methods of invariant theory, which are briefly surveyed. A range of applications of invariant descriptors in 3-D model-based vision is demonstrated. First, a model-based vision system that recognizes curved plane objects irrespective of their pose is demonstrated. Curves are not reduced to polyhedral approximations but are handled as objects in their own right. Models are generated directly from image data. Once objects have been recognized, their pose can be computed, Invariant descriptors for 3-D object with plane faces are described. All these ideas are demonstrated using images of real scenes. The stability of a range of invariant descriptors to measurement error is treated in detail. (I.E.)</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.99233</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE Computer Society</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1991-10, Vol.13 (10), p.971-991</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5414526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FORSYTH, D</creatorcontrib><creatorcontrib>MUNDY, J. L</creatorcontrib><creatorcontrib>ZISSERMAN, A</creatorcontrib><creatorcontrib>COELHO, C</creatorcontrib><creatorcontrib>HELLER, A</creatorcontrib><creatorcontrib>ROTHWELL, C</creatorcontrib><title>Invariant descriptors for 3-D object recognition and pose</title><title>IEEE transactions on pattern analysis and machine intelligence</title><description>Invariant descriptors are shape descriptors that are unaffected by object pose, by perspective projection, or by the intrinsic parameters of the camera. These descriptors can be constructed using the methods of invariant theory, which are briefly surveyed. A range of applications of invariant descriptors in 3-D model-based vision is demonstrated. First, a model-based vision system that recognizes curved plane objects irrespective of their pose is demonstrated. Curves are not reduced to polyhedral approximations but are handled as objects in their own right. Models are generated directly from image data. Once objects have been recognized, their pose can be computed, Invariant descriptors for 3-D object with plane faces are described. All these ideas are demonstrated using images of real scenes. The stability of a range of invariant descriptors to measurement error is treated in detail. (I.E.)</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNotjctKAzEUQIMoOFbBT8hC3E1NcpOZZCn1VSi40fVwm4ekTJMxmQr-vQW7OpvDOYTccrbknJkHkEtjBMAZabgB04ICc04axjvRai30JbmqdccYl4pBQ8w6_WCJmGbqfLUlTnMulYZcKLRPNG933s60eJu_UpxjThSTo1Ou_ppcBByrvzlxQT5fnj9Wb-3m_XW9ety0k-Awt9J0OiBqrrgLjImtFlxJrpwTGnrTSwcWFbMMHZrectAmCGZVkNgHsAYW5P6_O5X8ffB1HvaxWj-OmHw-1EEoUKxT4ijenUSsFsdQMNlYh6nEPZbf4TiVSnTwBzrtVEQ</recordid><startdate>19911001</startdate><enddate>19911001</enddate><creator>FORSYTH, D</creator><creator>MUNDY, J. L</creator><creator>ZISSERMAN, A</creator><creator>COELHO, C</creator><creator>HELLER, A</creator><creator>ROTHWELL, C</creator><general>IEEE Computer Society</general><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19911001</creationdate><title>Invariant descriptors for 3-D object recognition and pose</title><author>FORSYTH, D ; MUNDY, J. L ; ZISSERMAN, A ; COELHO, C ; HELLER, A ; ROTHWELL, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p213t-4968faa8151df002b8215415dd2837974d3ca50c0ada97c1389f20c5f4a7f3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FORSYTH, D</creatorcontrib><creatorcontrib>MUNDY, J. L</creatorcontrib><creatorcontrib>ZISSERMAN, A</creatorcontrib><creatorcontrib>COELHO, C</creatorcontrib><creatorcontrib>HELLER, A</creatorcontrib><creatorcontrib>ROTHWELL, C</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FORSYTH, D</au><au>MUNDY, J. L</au><au>ZISSERMAN, A</au><au>COELHO, C</au><au>HELLER, A</au><au>ROTHWELL, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant descriptors for 3-D object recognition and pose</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><date>1991-10-01</date><risdate>1991</risdate><volume>13</volume><issue>10</issue><spage>971</spage><epage>991</epage><pages>971-991</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Invariant descriptors are shape descriptors that are unaffected by object pose, by perspective projection, or by the intrinsic parameters of the camera. These descriptors can be constructed using the methods of invariant theory, which are briefly surveyed. A range of applications of invariant descriptors in 3-D model-based vision is demonstrated. First, a model-based vision system that recognizes curved plane objects irrespective of their pose is demonstrated. Curves are not reduced to polyhedral approximations but are handled as objects in their own right. Models are generated directly from image data. Once objects have been recognized, their pose can be computed, Invariant descriptors for 3-D object with plane faces are described. All these ideas are demonstrated using images of real scenes. The stability of a range of invariant descriptors to measurement error is treated in detail. (I.E.)</abstract><cop>Los Alamitos, CA</cop><pub>IEEE Computer Society</pub><doi>10.1109/34.99233</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1991-10, Vol.13 (10), p.971-991
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_25350652
source IEEE Xplore
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
title Invariant descriptors for 3-D object recognition and pose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20descriptors%20for%203-D%20object%20recognition%20and%20pose&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=FORSYTH,%20D&rft.date=1991-10-01&rft.volume=13&rft.issue=10&rft.spage=971&rft.epage=991&rft.pages=971-991&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.99233&rft_dat=%3Cproquest_pasca%3E25350652%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25350652&rft_id=info:pmid/&rfr_iscdi=true