Assumptions About Algorithms’ Capacity for Discrimination

Although their implementation has inspired optimism in many domains, algorithms can both systematize discrimination and obscure its presence. In seven studies, we test the hypothesis that people instead tend to assume algorithms discriminate less than humans due to beliefs that algorithms tend to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Personality & social psychology bulletin 2022-04, Vol.48 (4), p.582-595
Hauptverfasser: Jago, Arthur S., Laurin, Kristin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4
container_start_page 582
container_title Personality & social psychology bulletin
container_volume 48
creator Jago, Arthur S.
Laurin, Kristin
description Although their implementation has inspired optimism in many domains, algorithms can both systematize discrimination and obscure its presence. In seven studies, we test the hypothesis that people instead tend to assume algorithms discriminate less than humans due to beliefs that algorithms tend to be both more accurate and less emotional evaluators. As a result of these assumptions, people are more interested in being evaluated by an algorithm when they anticipate that discrimination against them is possible. We finally investigate the degree to which information about how algorithms train using data sets consisting of human judgments and decisions change people’s increased preferences for algorithms when they themselves anticipate discrimination. Taken together, these studies indicate that algorithms appear less discriminatory than humans, making people (potentially erroneously) more comfortable with their use.
doi_str_mv 10.1177/01461672211016187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534613644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01461672211016187</sage_id><sourcerecordid>2637949494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7046d37e405457b0991ef80a359bbe1a98d384faabc746dab850d20a0100fc943</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMo7rr6AF6k4MVL15kmaVo8lfUvLHjRc0nbdO3SNjVpD3vzNXw9n8SUXRUUyWEC8_u-mfkIOUWYIwpxCchCDEUQIAKGGIk9MkXOA18wSvfJdOz7IzAhR9auAYCFLDgkE8qAuW80JVeJtUPT9ZVurZdkeui9pF5pU_Uvjf14e_cWspN51W-8UhvvurK5qZqqlaPgmByUsrbqZFdn5Pn25mlx7y8f7x4WydLPaRj1vnBTCyoUA864yCCOUZURSMrjLFMo46igESulzHLhSJlFHIoAJCBAmceMzsjF1rcz-nVQtk8bt4eqa9kqPdg04NTlQEM2oue_0LUeTOu2S4OQipiNz1G4pXKjrTWqTDt3lTSbFCEdk03_JOs0ZzvnIWtU8a34itIB8y1g5Ur9jP3f8RMzun9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637949494</pqid></control><display><type>article</type><title>Assumptions About Algorithms’ Capacity for Discrimination</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>SAGE Complete</source><source>Sociological Abstracts</source><creator>Jago, Arthur S. ; Laurin, Kristin</creator><creatorcontrib>Jago, Arthur S. ; Laurin, Kristin</creatorcontrib><description>Although their implementation has inspired optimism in many domains, algorithms can both systematize discrimination and obscure its presence. In seven studies, we test the hypothesis that people instead tend to assume algorithms discriminate less than humans due to beliefs that algorithms tend to be both more accurate and less emotional evaluators. As a result of these assumptions, people are more interested in being evaluated by an algorithm when they anticipate that discrimination against them is possible. We finally investigate the degree to which information about how algorithms train using data sets consisting of human judgments and decisions change people’s increased preferences for algorithms when they themselves anticipate discrimination. Taken together, these studies indicate that algorithms appear less discriminatory than humans, making people (potentially erroneously) more comfortable with their use.</description><identifier>ISSN: 0146-1672</identifier><identifier>EISSN: 1552-7433</identifier><identifier>DOI: 10.1177/01461672211016187</identifier><identifier>PMID: 34044648</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Discrimination ; Emotions ; Humans ; Judgment ; Optimism</subject><ispartof>Personality &amp; social psychology bulletin, 2022-04, Vol.48 (4), p.582-595</ispartof><rights>2021 by the Society for Personality and Social Psychology, Inc</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7046d37e405457b0991ef80a359bbe1a98d384faabc746dab850d20a0100fc943</citedby><cites>FETCH-LOGICAL-c368t-7046d37e405457b0991ef80a359bbe1a98d384faabc746dab850d20a0100fc943</cites><orcidid>0000-0002-6009-047X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01461672211016187$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01461672211016187$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,33751,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34044648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jago, Arthur S.</creatorcontrib><creatorcontrib>Laurin, Kristin</creatorcontrib><title>Assumptions About Algorithms’ Capacity for Discrimination</title><title>Personality &amp; social psychology bulletin</title><addtitle>Pers Soc Psychol Bull</addtitle><description>Although their implementation has inspired optimism in many domains, algorithms can both systematize discrimination and obscure its presence. In seven studies, we test the hypothesis that people instead tend to assume algorithms discriminate less than humans due to beliefs that algorithms tend to be both more accurate and less emotional evaluators. As a result of these assumptions, people are more interested in being evaluated by an algorithm when they anticipate that discrimination against them is possible. We finally investigate the degree to which information about how algorithms train using data sets consisting of human judgments and decisions change people’s increased preferences for algorithms when they themselves anticipate discrimination. Taken together, these studies indicate that algorithms appear less discriminatory than humans, making people (potentially erroneously) more comfortable with their use.</description><subject>Algorithms</subject><subject>Discrimination</subject><subject>Emotions</subject><subject>Humans</subject><subject>Judgment</subject><subject>Optimism</subject><issn>0146-1672</issn><issn>1552-7433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp1kM9KxDAQxoMo7rr6AF6k4MVL15kmaVo8lfUvLHjRc0nbdO3SNjVpD3vzNXw9n8SUXRUUyWEC8_u-mfkIOUWYIwpxCchCDEUQIAKGGIk9MkXOA18wSvfJdOz7IzAhR9auAYCFLDgkE8qAuW80JVeJtUPT9ZVurZdkeui9pF5pU_Uvjf14e_cWspN51W-8UhvvurK5qZqqlaPgmByUsrbqZFdn5Pn25mlx7y8f7x4WydLPaRj1vnBTCyoUA864yCCOUZURSMrjLFMo46igESulzHLhSJlFHIoAJCBAmceMzsjF1rcz-nVQtk8bt4eqa9kqPdg04NTlQEM2oue_0LUeTOu2S4OQipiNz1G4pXKjrTWqTDt3lTSbFCEdk03_JOs0ZzvnIWtU8a34itIB8y1g5Ur9jP3f8RMzun9g</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Jago, Arthur S.</creator><creator>Laurin, Kristin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6009-047X</orcidid></search><sort><creationdate>202204</creationdate><title>Assumptions About Algorithms’ Capacity for Discrimination</title><author>Jago, Arthur S. ; Laurin, Kristin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7046d37e405457b0991ef80a359bbe1a98d384faabc746dab850d20a0100fc943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Discrimination</topic><topic>Emotions</topic><topic>Humans</topic><topic>Judgment</topic><topic>Optimism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jago, Arthur S.</creatorcontrib><creatorcontrib>Laurin, Kristin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><jtitle>Personality &amp; social psychology bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jago, Arthur S.</au><au>Laurin, Kristin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assumptions About Algorithms’ Capacity for Discrimination</atitle><jtitle>Personality &amp; social psychology bulletin</jtitle><addtitle>Pers Soc Psychol Bull</addtitle><date>2022-04</date><risdate>2022</risdate><volume>48</volume><issue>4</issue><spage>582</spage><epage>595</epage><pages>582-595</pages><issn>0146-1672</issn><eissn>1552-7433</eissn><abstract>Although their implementation has inspired optimism in many domains, algorithms can both systematize discrimination and obscure its presence. In seven studies, we test the hypothesis that people instead tend to assume algorithms discriminate less than humans due to beliefs that algorithms tend to be both more accurate and less emotional evaluators. As a result of these assumptions, people are more interested in being evaluated by an algorithm when they anticipate that discrimination against them is possible. We finally investigate the degree to which information about how algorithms train using data sets consisting of human judgments and decisions change people’s increased preferences for algorithms when they themselves anticipate discrimination. Taken together, these studies indicate that algorithms appear less discriminatory than humans, making people (potentially erroneously) more comfortable with their use.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34044648</pmid><doi>10.1177/01461672211016187</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6009-047X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-1672
ispartof Personality & social psychology bulletin, 2022-04, Vol.48 (4), p.582-595
issn 0146-1672
1552-7433
language eng
recordid cdi_proquest_miscellaneous_2534613644
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; SAGE Complete; Sociological Abstracts
subjects Algorithms
Discrimination
Emotions
Humans
Judgment
Optimism
title Assumptions About Algorithms’ Capacity for Discrimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assumptions%20About%20Algorithms%E2%80%99%20Capacity%20for%20Discrimination&rft.jtitle=Personality%20&%20social%20psychology%20bulletin&rft.au=Jago,%20Arthur%20S.&rft.date=2022-04&rft.volume=48&rft.issue=4&rft.spage=582&rft.epage=595&rft.pages=582-595&rft.issn=0146-1672&rft.eissn=1552-7433&rft_id=info:doi/10.1177/01461672211016187&rft_dat=%3Cproquest_cross%3E2637949494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637949494&rft_id=info:pmid/34044648&rft_sage_id=10.1177_01461672211016187&rfr_iscdi=true