The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems

Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2022-02, Vol.61 (6), p.2011-2019
Hauptverfasser: Chandrasekaran, Sriram, Danos, Nicole, George, Uduak Z, Han, Jin-Ping, Quon, Gerald, Müller, Rolf, Tsang, Yinphan, Wolgemuth, Charles
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2019
container_issue 6
container_start_page 2011
container_title Integrative and comparative biology
container_volume 61
creator Chandrasekaran, Sriram
Danos, Nicole
George, Uduak Z
Han, Jin-Ping
Quon, Gerald
Müller, Rolf
Tsang, Yinphan
Wolgemuth, Charles
description Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.
doi_str_mv 10.1093/icb/icab114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534612637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icb/icab114</oup_id><sourcerecordid>2534612637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRbK2u3MuspCDReSUz467UR4WKoO06zExuNJKXmQTsv3dKq0sXl_vBPXxcDkLnlFxTovlN4WwYYykVB2hM41hGkjB-uM2ChJzwETrx_pOQcCT0GI24IELFUozRYvUBePYNHjc5XhY53OIZfm1MVpkW502H13UGne9NnRX1O77b1KYqHH4eyr7wzpSA3za-h8qfoqPclB7O9nuC1g_3q_kiWr48Ps1ny8gxJfuIK2uVpkCJMc4aJkmulVYyFozxmNtEcq1ZlunECsOMgVhpJqSUShDnOPAJmu562675GsD3aRUegbI0NTSDT1nMRUJZwmVAr3ao6xrvO8jTtisq021SStKtujSoS_fqAn2xLx5sBdkf--sqAJc7oBnaf5t-AMSfdYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534612637</pqid></control><display><type>article</type><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</creator><creatorcontrib>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</creatorcontrib><description>Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icab114</identifier><identifier>PMID: 34048574</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Integrative and comparative biology, 2022-02, Vol.61 (6), p.2011-2019</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</citedby><cites>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</cites><orcidid>0000-0002-8405-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34048574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, Sriram</creatorcontrib><creatorcontrib>Danos, Nicole</creatorcontrib><creatorcontrib>George, Uduak Z</creatorcontrib><creatorcontrib>Han, Jin-Ping</creatorcontrib><creatorcontrib>Quon, Gerald</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Tsang, Yinphan</creatorcontrib><creatorcontrib>Wolgemuth, Charles</creatorcontrib><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><title>Integrative and comparative biology</title><addtitle>Integr Comp Biol</addtitle><description>Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</description><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AURgdRbK2u3MuspCDReSUz467UR4WKoO06zExuNJKXmQTsv3dKq0sXl_vBPXxcDkLnlFxTovlN4WwYYykVB2hM41hGkjB-uM2ChJzwETrx_pOQcCT0GI24IELFUozRYvUBePYNHjc5XhY53OIZfm1MVpkW502H13UGne9NnRX1O77b1KYqHH4eyr7wzpSA3za-h8qfoqPclB7O9nuC1g_3q_kiWr48Ps1ny8gxJfuIK2uVpkCJMc4aJkmulVYyFozxmNtEcq1ZlunECsOMgVhpJqSUShDnOPAJmu562675GsD3aRUegbI0NTSDT1nMRUJZwmVAr3ao6xrvO8jTtisq021SStKtujSoS_fqAn2xLx5sBdkf--sqAJc7oBnaf5t-AMSfdYo</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Chandrasekaran, Sriram</creator><creator>Danos, Nicole</creator><creator>George, Uduak Z</creator><creator>Han, Jin-Ping</creator><creator>Quon, Gerald</creator><creator>Müller, Rolf</creator><creator>Tsang, Yinphan</creator><creator>Wolgemuth, Charles</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8405-5708</orcidid></search><sort><creationdate>20220205</creationdate><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><author>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, Sriram</creatorcontrib><creatorcontrib>Danos, Nicole</creatorcontrib><creatorcontrib>George, Uduak Z</creatorcontrib><creatorcontrib>Han, Jin-Ping</creatorcontrib><creatorcontrib>Quon, Gerald</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Tsang, Yinphan</creatorcontrib><creatorcontrib>Wolgemuth, Charles</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, Sriram</au><au>Danos, Nicole</au><au>George, Uduak Z</au><au>Han, Jin-Ping</au><au>Quon, Gerald</au><au>Müller, Rolf</au><au>Tsang, Yinphan</au><au>Wolgemuth, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</atitle><jtitle>Integrative and comparative biology</jtitle><addtitle>Integr Comp Biol</addtitle><date>2022-02-05</date><risdate>2022</risdate><volume>61</volume><issue>6</issue><spage>2011</spage><epage>2019</epage><pages>2011-2019</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34048574</pmid><doi>10.1093/icb/icab114</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8405-5708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7063
ispartof Integrative and comparative biology, 2022-02, Vol.61 (6), p.2011-2019
issn 1540-7063
1557-7023
language eng
recordid cdi_proquest_miscellaneous_2534612637
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Axes%20of%20Life:%20A%20Roadmap%20for%20Understanding%20Dynamic%20Multiscale%20Systems&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Chandrasekaran,%20Sriram&rft.date=2022-02-05&rft.volume=61&rft.issue=6&rft.spage=2011&rft.epage=2019&rft.pages=2011-2019&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icab114&rft_dat=%3Cproquest_cross%3E2534612637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534612637&rft_id=info:pmid/34048574&rft_oup_id=10.1093/icb/icab114&rfr_iscdi=true