The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems
Synopsis The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass...
Gespeichert in:
Veröffentlicht in: | Integrative and comparative biology 2022-02, Vol.61 (6), p.2011-2019 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2019 |
---|---|
container_issue | 6 |
container_start_page | 2011 |
container_title | Integrative and comparative biology |
container_volume | 61 |
creator | Chandrasekaran, Sriram Danos, Nicole George, Uduak Z Han, Jin-Ping Quon, Gerald Müller, Rolf Tsang, Yinphan Wolgemuth, Charles |
description | Synopsis
The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists. |
doi_str_mv | 10.1093/icb/icab114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534612637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icb/icab114</oup_id><sourcerecordid>2534612637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRbK2u3MuspCDReSUz467UR4WKoO06zExuNJKXmQTsv3dKq0sXl_vBPXxcDkLnlFxTovlN4WwYYykVB2hM41hGkjB-uM2ChJzwETrx_pOQcCT0GI24IELFUozRYvUBePYNHjc5XhY53OIZfm1MVpkW502H13UGne9NnRX1O77b1KYqHH4eyr7wzpSA3za-h8qfoqPclB7O9nuC1g_3q_kiWr48Ps1ny8gxJfuIK2uVpkCJMc4aJkmulVYyFozxmNtEcq1ZlunECsOMgVhpJqSUShDnOPAJmu562675GsD3aRUegbI0NTSDT1nMRUJZwmVAr3ao6xrvO8jTtisq021SStKtujSoS_fqAn2xLx5sBdkf--sqAJc7oBnaf5t-AMSfdYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534612637</pqid></control><display><type>article</type><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</creator><creatorcontrib>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</creatorcontrib><description>Synopsis
The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icab114</identifier><identifier>PMID: 34048574</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Integrative and comparative biology, 2022-02, Vol.61 (6), p.2011-2019</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</citedby><cites>FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</cites><orcidid>0000-0002-8405-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34048574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, Sriram</creatorcontrib><creatorcontrib>Danos, Nicole</creatorcontrib><creatorcontrib>George, Uduak Z</creatorcontrib><creatorcontrib>Han, Jin-Ping</creatorcontrib><creatorcontrib>Quon, Gerald</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Tsang, Yinphan</creatorcontrib><creatorcontrib>Wolgemuth, Charles</creatorcontrib><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><title>Integrative and comparative biology</title><addtitle>Integr Comp Biol</addtitle><description>Synopsis
The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</description><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AURgdRbK2u3MuspCDReSUz467UR4WKoO06zExuNJKXmQTsv3dKq0sXl_vBPXxcDkLnlFxTovlN4WwYYykVB2hM41hGkjB-uM2ChJzwETrx_pOQcCT0GI24IELFUozRYvUBePYNHjc5XhY53OIZfm1MVpkW502H13UGne9NnRX1O77b1KYqHH4eyr7wzpSA3za-h8qfoqPclB7O9nuC1g_3q_kiWr48Ps1ny8gxJfuIK2uVpkCJMc4aJkmulVYyFozxmNtEcq1ZlunECsOMgVhpJqSUShDnOPAJmu562675GsD3aRUegbI0NTSDT1nMRUJZwmVAr3ao6xrvO8jTtisq021SStKtujSoS_fqAn2xLx5sBdkf--sqAJc7oBnaf5t-AMSfdYo</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Chandrasekaran, Sriram</creator><creator>Danos, Nicole</creator><creator>George, Uduak Z</creator><creator>Han, Jin-Ping</creator><creator>Quon, Gerald</creator><creator>Müller, Rolf</creator><creator>Tsang, Yinphan</creator><creator>Wolgemuth, Charles</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8405-5708</orcidid></search><sort><creationdate>20220205</creationdate><title>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</title><author>Chandrasekaran, Sriram ; Danos, Nicole ; George, Uduak Z ; Han, Jin-Ping ; Quon, Gerald ; Müller, Rolf ; Tsang, Yinphan ; Wolgemuth, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-38bb891e10aacba270f989875422353b673992dd96b4a2aae58924777840cc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, Sriram</creatorcontrib><creatorcontrib>Danos, Nicole</creatorcontrib><creatorcontrib>George, Uduak Z</creatorcontrib><creatorcontrib>Han, Jin-Ping</creatorcontrib><creatorcontrib>Quon, Gerald</creatorcontrib><creatorcontrib>Müller, Rolf</creatorcontrib><creatorcontrib>Tsang, Yinphan</creatorcontrib><creatorcontrib>Wolgemuth, Charles</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, Sriram</au><au>Danos, Nicole</au><au>George, Uduak Z</au><au>Han, Jin-Ping</au><au>Quon, Gerald</au><au>Müller, Rolf</au><au>Tsang, Yinphan</au><au>Wolgemuth, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems</atitle><jtitle>Integrative and comparative biology</jtitle><addtitle>Integr Comp Biol</addtitle><date>2022-02-05</date><risdate>2022</risdate><volume>61</volume><issue>6</issue><spage>2011</spage><epage>2019</epage><pages>2011-2019</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>Synopsis
The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34048574</pmid><doi>10.1093/icb/icab114</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8405-5708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7063 |
ispartof | Integrative and comparative biology, 2022-02, Vol.61 (6), p.2011-2019 |
issn | 1540-7063 1557-7023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2534612637 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Axes%20of%20Life:%20A%20Roadmap%20for%20Understanding%20Dynamic%20Multiscale%20Systems&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Chandrasekaran,%20Sriram&rft.date=2022-02-05&rft.volume=61&rft.issue=6&rft.spage=2011&rft.epage=2019&rft.pages=2011-2019&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icab114&rft_dat=%3Cproquest_cross%3E2534612637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534612637&rft_id=info:pmid/34048574&rft_oup_id=10.1093/icb/icab114&rfr_iscdi=true |