A deep learning algorithm for 3D cell detection in whole mouse brain image datasets

Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-05, Vol.17 (5), p.e1009074-e1009074
Hauptverfasser: Tyson, Adam L, Rousseau, Charly V, Niedworok, Christian J, Keshavarzi, Sepiedeh, Tsitoura, Chryssanthi, Cossell, Lee, Strom, Molly, Margrie, Troy W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009074
container_issue 5
container_start_page e1009074
container_title PLoS computational biology
container_volume 17
creator Tyson, Adam L
Rousseau, Charly V
Niedworok, Christian J
Keshavarzi, Sepiedeh
Tsitoura, Chryssanthi
Cossell, Lee
Strom, Molly
Margrie, Troy W
description Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.
doi_str_mv 10.1371/journal.pcbi.1009074
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534612550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665275358</galeid><doaj_id>oai_doaj_org_article_6e786c78174c437ba66de5157f9cbdc1</doaj_id><sourcerecordid>A665275358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</originalsourceid><addsrcrecordid>eNqVkkuP0zAQxyMEYpeFb4BEJC7socWO3xekanlspQokFs6W40xSV0lcbHeBb49DA6KrvSAfPBr_5j8PT1E8x2iJicCvd_4QRtMv97Z2S4yQQoI-KM4xY2QhCJMP_7HPiicx7hDKpuKPizNCEZW04ufFzapsAPZlDyaMbuxK03c-uLQdytaHkrwtLfR9ZhLY5PxYurH8vvU9lIM_RCjrYLLHDaaDsjHJREjxafGoNX2EZ_N9UXx9_-7L1fVi8-nD-mq1WVguqrRoa1RxhUULUlbGVKTGtaItplgyjgxXDW2VVFRxZiRCNHcIICgBwmosWEMuihdH3X3vo57nEXXFsgLnrFKZWB-Jxpud3odcZ_ipvXH6t8OHTpuQnO1BcxCSWyGxoJYSURvOG2CYiVbZurE4a72Zsx3qARoLYwqmPxE9fRndVnf-VkussFIyC1weBbZ3wq5XGz35EKlkRSi9nZK9mpMF_-0AMenBxeknzAh57rlHQjmuGEMZfXkHvX8SM9WZ3KwbW59rtJOoXk2EYHk3MrW8h8qngcFZP0Lrsv8k4PIkIDMJfqTOHGLU65vP_8F-PGXpkbXBxxig_TswjPS0_n-a1NP663n9yS_fnfMz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541866529</pqid></control><display><type>article</type><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W</creator><contributor>Berry, Hugues</contributor><creatorcontrib>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W ; Berry, Hugues</creatorcontrib><description>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009074</identifier><identifier>PMID: 34048426</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Annotations ; Biology and Life Sciences ; Brain ; Candidates ; Computational neuroscience ; Computer and Information Sciences ; Deep learning ; Engineering and Technology ; Image analysis ; Image processing ; Image segmentation ; Life Sciences ; Machine learning ; Methods ; Microscopy ; Neuroimaging ; Neurons ; Neurons and Cognition ; Noise ; Object recognition ; Physical Sciences ; Research and Analysis Methods ; Science Policy ; Software ; Training</subject><ispartof>PLoS computational biology, 2021-05, Vol.17 (5), p.e1009074-e1009074</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tyson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Tyson et al 2021 Tyson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</citedby><cites>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</cites><orcidid>0000-0002-7310-8034 ; 0000-0002-9856-0043 ; 0000-0002-5363-3157 ; 0000-0003-3225-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03282344$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Berry, Hugues</contributor><creatorcontrib>Tyson, Adam L</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Niedworok, Christian J</creatorcontrib><creatorcontrib>Keshavarzi, Sepiedeh</creatorcontrib><creatorcontrib>Tsitoura, Chryssanthi</creatorcontrib><creatorcontrib>Cossell, Lee</creatorcontrib><creatorcontrib>Strom, Molly</creatorcontrib><creatorcontrib>Margrie, Troy W</creatorcontrib><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><title>PLoS computational biology</title><description>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Candidates</subject><subject>Computational neuroscience</subject><subject>Computer and Information Sciences</subject><subject>Deep learning</subject><subject>Engineering and Technology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Science Policy</subject><subject>Software</subject><subject>Training</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAQxyMEYpeFb4BEJC7socWO3xekanlspQokFs6W40xSV0lcbHeBb49DA6KrvSAfPBr_5j8PT1E8x2iJicCvd_4QRtMv97Z2S4yQQoI-KM4xY2QhCJMP_7HPiicx7hDKpuKPizNCEZW04ufFzapsAPZlDyaMbuxK03c-uLQdytaHkrwtLfR9ZhLY5PxYurH8vvU9lIM_RCjrYLLHDaaDsjHJREjxafGoNX2EZ_N9UXx9_-7L1fVi8-nD-mq1WVguqrRoa1RxhUULUlbGVKTGtaItplgyjgxXDW2VVFRxZiRCNHcIICgBwmosWEMuihdH3X3vo57nEXXFsgLnrFKZWB-Jxpud3odcZ_ipvXH6t8OHTpuQnO1BcxCSWyGxoJYSURvOG2CYiVbZurE4a72Zsx3qARoLYwqmPxE9fRndVnf-VkussFIyC1weBbZ3wq5XGz35EKlkRSi9nZK9mpMF_-0AMenBxeknzAh57rlHQjmuGEMZfXkHvX8SM9WZ3KwbW59rtJOoXk2EYHk3MrW8h8qngcFZP0Lrsv8k4PIkIDMJfqTOHGLU65vP_8F-PGXpkbXBxxig_TswjPS0_n-a1NP663n9yS_fnfMz</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Tyson, Adam L</creator><creator>Rousseau, Charly V</creator><creator>Niedworok, Christian J</creator><creator>Keshavarzi, Sepiedeh</creator><creator>Tsitoura, Chryssanthi</creator><creator>Cossell, Lee</creator><creator>Strom, Molly</creator><creator>Margrie, Troy W</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7310-8034</orcidid><orcidid>https://orcid.org/0000-0002-9856-0043</orcidid><orcidid>https://orcid.org/0000-0002-5363-3157</orcidid><orcidid>https://orcid.org/0000-0003-3225-1130</orcidid></search><sort><creationdate>20210528</creationdate><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><author>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Candidates</topic><topic>Computational neuroscience</topic><topic>Computer and Information Sciences</topic><topic>Deep learning</topic><topic>Engineering and Technology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Science Policy</topic><topic>Software</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyson, Adam L</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Niedworok, Christian J</creatorcontrib><creatorcontrib>Keshavarzi, Sepiedeh</creatorcontrib><creatorcontrib>Tsitoura, Chryssanthi</creatorcontrib><creatorcontrib>Cossell, Lee</creatorcontrib><creatorcontrib>Strom, Molly</creatorcontrib><creatorcontrib>Margrie, Troy W</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyson, Adam L</au><au>Rousseau, Charly V</au><au>Niedworok, Christian J</au><au>Keshavarzi, Sepiedeh</au><au>Tsitoura, Chryssanthi</au><au>Cossell, Lee</au><au>Strom, Molly</au><au>Margrie, Troy W</au><au>Berry, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</atitle><jtitle>PLoS computational biology</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1009074</spage><epage>e1009074</epage><pages>e1009074-e1009074</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34048426</pmid><doi>10.1371/journal.pcbi.1009074</doi><orcidid>https://orcid.org/0000-0002-7310-8034</orcidid><orcidid>https://orcid.org/0000-0002-9856-0043</orcidid><orcidid>https://orcid.org/0000-0002-5363-3157</orcidid><orcidid>https://orcid.org/0000-0003-3225-1130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-05, Vol.17 (5), p.e1009074-e1009074
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_proquest_miscellaneous_2534612550
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Analysis
Annotations
Biology and Life Sciences
Brain
Candidates
Computational neuroscience
Computer and Information Sciences
Deep learning
Engineering and Technology
Image analysis
Image processing
Image segmentation
Life Sciences
Machine learning
Methods
Microscopy
Neuroimaging
Neurons
Neurons and Cognition
Noise
Object recognition
Physical Sciences
Research and Analysis Methods
Science Policy
Software
Training
title A deep learning algorithm for 3D cell detection in whole mouse brain image datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20algorithm%20for%203D%20cell%20detection%20in%20whole%20mouse%20brain%20image%20datasets&rft.jtitle=PLoS%20computational%20biology&rft.au=Tyson,%20Adam%20L&rft.date=2021-05-28&rft.volume=17&rft.issue=5&rft.spage=e1009074&rft.epage=e1009074&rft.pages=e1009074-e1009074&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009074&rft_dat=%3Cgale_plos_%3EA665275358%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541866529&rft_id=info:pmid/34048426&rft_galeid=A665275358&rft_doaj_id=oai_doaj_org_article_6e786c78174c437ba66de5157f9cbdc1&rfr_iscdi=true