A deep learning algorithm for 3D cell detection in whole mouse brain image datasets
Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent b...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-05, Vol.17 (5), p.e1009074-e1009074 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009074 |
---|---|
container_issue | 5 |
container_start_page | e1009074 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Tyson, Adam L Rousseau, Charly V Niedworok, Christian J Keshavarzi, Sepiedeh Tsitoura, Chryssanthi Cossell, Lee Strom, Molly Margrie, Troy W |
description | Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection. |
doi_str_mv | 10.1371/journal.pcbi.1009074 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534612550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665275358</galeid><doaj_id>oai_doaj_org_article_6e786c78174c437ba66de5157f9cbdc1</doaj_id><sourcerecordid>A665275358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</originalsourceid><addsrcrecordid>eNqVkkuP0zAQxyMEYpeFb4BEJC7socWO3xekanlspQokFs6W40xSV0lcbHeBb49DA6KrvSAfPBr_5j8PT1E8x2iJicCvd_4QRtMv97Z2S4yQQoI-KM4xY2QhCJMP_7HPiicx7hDKpuKPizNCEZW04ufFzapsAPZlDyaMbuxK03c-uLQdytaHkrwtLfR9ZhLY5PxYurH8vvU9lIM_RCjrYLLHDaaDsjHJREjxafGoNX2EZ_N9UXx9_-7L1fVi8-nD-mq1WVguqrRoa1RxhUULUlbGVKTGtaItplgyjgxXDW2VVFRxZiRCNHcIICgBwmosWEMuihdH3X3vo57nEXXFsgLnrFKZWB-Jxpud3odcZ_ipvXH6t8OHTpuQnO1BcxCSWyGxoJYSURvOG2CYiVbZurE4a72Zsx3qARoLYwqmPxE9fRndVnf-VkussFIyC1weBbZ3wq5XGz35EKlkRSi9nZK9mpMF_-0AMenBxeknzAh57rlHQjmuGEMZfXkHvX8SM9WZ3KwbW59rtJOoXk2EYHk3MrW8h8qngcFZP0Lrsv8k4PIkIDMJfqTOHGLU65vP_8F-PGXpkbXBxxig_TswjPS0_n-a1NP663n9yS_fnfMz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541866529</pqid></control><display><type>article</type><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W</creator><contributor>Berry, Hugues</contributor><creatorcontrib>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W ; Berry, Hugues</creatorcontrib><description>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009074</identifier><identifier>PMID: 34048426</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Annotations ; Biology and Life Sciences ; Brain ; Candidates ; Computational neuroscience ; Computer and Information Sciences ; Deep learning ; Engineering and Technology ; Image analysis ; Image processing ; Image segmentation ; Life Sciences ; Machine learning ; Methods ; Microscopy ; Neuroimaging ; Neurons ; Neurons and Cognition ; Noise ; Object recognition ; Physical Sciences ; Research and Analysis Methods ; Science Policy ; Software ; Training</subject><ispartof>PLoS computational biology, 2021-05, Vol.17 (5), p.e1009074-e1009074</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Tyson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Tyson et al 2021 Tyson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</citedby><cites>FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</cites><orcidid>0000-0002-7310-8034 ; 0000-0002-9856-0043 ; 0000-0002-5363-3157 ; 0000-0003-3225-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03282344$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Berry, Hugues</contributor><creatorcontrib>Tyson, Adam L</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Niedworok, Christian J</creatorcontrib><creatorcontrib>Keshavarzi, Sepiedeh</creatorcontrib><creatorcontrib>Tsitoura, Chryssanthi</creatorcontrib><creatorcontrib>Cossell, Lee</creatorcontrib><creatorcontrib>Strom, Molly</creatorcontrib><creatorcontrib>Margrie, Troy W</creatorcontrib><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><title>PLoS computational biology</title><description>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Candidates</subject><subject>Computational neuroscience</subject><subject>Computer and Information Sciences</subject><subject>Deep learning</subject><subject>Engineering and Technology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Noise</subject><subject>Object recognition</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Science Policy</subject><subject>Software</subject><subject>Training</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAQxyMEYpeFb4BEJC7socWO3xekanlspQokFs6W40xSV0lcbHeBb49DA6KrvSAfPBr_5j8PT1E8x2iJicCvd_4QRtMv97Z2S4yQQoI-KM4xY2QhCJMP_7HPiicx7hDKpuKPizNCEZW04ufFzapsAPZlDyaMbuxK03c-uLQdytaHkrwtLfR9ZhLY5PxYurH8vvU9lIM_RCjrYLLHDaaDsjHJREjxafGoNX2EZ_N9UXx9_-7L1fVi8-nD-mq1WVguqrRoa1RxhUULUlbGVKTGtaItplgyjgxXDW2VVFRxZiRCNHcIICgBwmosWEMuihdH3X3vo57nEXXFsgLnrFKZWB-Jxpud3odcZ_ipvXH6t8OHTpuQnO1BcxCSWyGxoJYSURvOG2CYiVbZurE4a72Zsx3qARoLYwqmPxE9fRndVnf-VkussFIyC1weBbZ3wq5XGz35EKlkRSi9nZK9mpMF_-0AMenBxeknzAh57rlHQjmuGEMZfXkHvX8SM9WZ3KwbW59rtJOoXk2EYHk3MrW8h8qngcFZP0Lrsv8k4PIkIDMJfqTOHGLU65vP_8F-PGXpkbXBxxig_TswjPS0_n-a1NP663n9yS_fnfMz</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Tyson, Adam L</creator><creator>Rousseau, Charly V</creator><creator>Niedworok, Christian J</creator><creator>Keshavarzi, Sepiedeh</creator><creator>Tsitoura, Chryssanthi</creator><creator>Cossell, Lee</creator><creator>Strom, Molly</creator><creator>Margrie, Troy W</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7310-8034</orcidid><orcidid>https://orcid.org/0000-0002-9856-0043</orcidid><orcidid>https://orcid.org/0000-0002-5363-3157</orcidid><orcidid>https://orcid.org/0000-0003-3225-1130</orcidid></search><sort><creationdate>20210528</creationdate><title>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</title><author>Tyson, Adam L ; Rousseau, Charly V ; Niedworok, Christian J ; Keshavarzi, Sepiedeh ; Tsitoura, Chryssanthi ; Cossell, Lee ; Strom, Molly ; Margrie, Troy W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-fb026917fe882aa23b1b94f1418560a69d4f9894965a8004090ee743e35b175d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Candidates</topic><topic>Computational neuroscience</topic><topic>Computer and Information Sciences</topic><topic>Deep learning</topic><topic>Engineering and Technology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Noise</topic><topic>Object recognition</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Science Policy</topic><topic>Software</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyson, Adam L</creatorcontrib><creatorcontrib>Rousseau, Charly V</creatorcontrib><creatorcontrib>Niedworok, Christian J</creatorcontrib><creatorcontrib>Keshavarzi, Sepiedeh</creatorcontrib><creatorcontrib>Tsitoura, Chryssanthi</creatorcontrib><creatorcontrib>Cossell, Lee</creatorcontrib><creatorcontrib>Strom, Molly</creatorcontrib><creatorcontrib>Margrie, Troy W</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyson, Adam L</au><au>Rousseau, Charly V</au><au>Niedworok, Christian J</au><au>Keshavarzi, Sepiedeh</au><au>Tsitoura, Chryssanthi</au><au>Cossell, Lee</au><au>Strom, Molly</au><au>Margrie, Troy W</au><au>Berry, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning algorithm for 3D cell detection in whole mouse brain image datasets</atitle><jtitle>PLoS computational biology</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1009074</spage><epage>e1009074</epage><pages>e1009074-e1009074</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34048426</pmid><doi>10.1371/journal.pcbi.1009074</doi><orcidid>https://orcid.org/0000-0002-7310-8034</orcidid><orcidid>https://orcid.org/0000-0002-9856-0043</orcidid><orcidid>https://orcid.org/0000-0002-5363-3157</orcidid><orcidid>https://orcid.org/0000-0003-3225-1130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-05, Vol.17 (5), p.e1009074-e1009074 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_proquest_miscellaneous_2534612550 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Analysis Annotations Biology and Life Sciences Brain Candidates Computational neuroscience Computer and Information Sciences Deep learning Engineering and Technology Image analysis Image processing Image segmentation Life Sciences Machine learning Methods Microscopy Neuroimaging Neurons Neurons and Cognition Noise Object recognition Physical Sciences Research and Analysis Methods Science Policy Software Training |
title | A deep learning algorithm for 3D cell detection in whole mouse brain image datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20algorithm%20for%203D%20cell%20detection%20in%20whole%20mouse%20brain%20image%20datasets&rft.jtitle=PLoS%20computational%20biology&rft.au=Tyson,%20Adam%20L&rft.date=2021-05-28&rft.volume=17&rft.issue=5&rft.spage=e1009074&rft.epage=e1009074&rft.pages=e1009074-e1009074&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009074&rft_dat=%3Cgale_plos_%3EA665275358%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541866529&rft_id=info:pmid/34048426&rft_galeid=A665275358&rft_doaj_id=oai_doaj_org_article_6e786c78174c437ba66de5157f9cbdc1&rfr_iscdi=true |