Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning

Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-10, Vol.52 (10), p.11226-11239
Hauptverfasser: Zhang, Wei, Deng, Zhaohong, Wang, Jun, Choi, Kup-Sze, Zhang, Te, Luo, Xiaoqing, Shen, Hongbin, Ying, Wenhao, Wang, Shitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11239
container_issue 10
container_start_page 11226
container_title IEEE transactions on cybernetics
container_volume 52
creator Zhang, Wei
Deng, Zhaohong
Wang, Jun
Choi, Kup-Sze
Zhang, Te
Luo, Xiaoqing
Shen, Hongbin
Ying, Wenhao
Wang, Shitong
description Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.
doi_str_mv 10.1109/TCYB.2021.3071451
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534611473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9442380</ieee_id><sourcerecordid>2716347246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJaELiP6D0Iuglh9jR6GO1OjamaQM2geBSehJa7bhR2KwcSdt8_PVZ1yaHzuUNw-89Bh4hn4DNAJi5WM1_X8444zATTINU8IEcc6jqKedaHbzvlT4ik5zv2Tj1eDL1R3IkJJNCgTkmd6vk-twOvoS_SJdDN2rAJ7qMLXah_0N_hXJHr_uCaZOwuKZDejt0mM_p0pUUnumV8yWm8OpKiP05dX1L5zFuMLl_kQt0qR-DTsnh2nUZJ3s9IT-vvq3mP6aLm-_X86-LqReVKVOvPaBY61YaWWnt18rUoFrumffSm0aBAAW69UzWDmvPhHTKtE3TSOclZ-KEnO1yNyk-DpiLfQjZY9e5HuOQLVdCVgBSixH98h96H4fUj99ZrqESUnNZjRTsKJ9izgnXdpPCg0svFpjdNmG3TdhtE3bfxOj5vPMERHznjZRc1Ey8ARSbgv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716347246</pqid></control><display><type>article</type><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</creator><creatorcontrib>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</creatorcontrib><description>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3071451</identifier><identifier>PMID: 34043519</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Collaboratively learning ; Factorization ; fuzzy system ; Fuzzy systems ; Learning ; Matrix decomposition ; matrix factorization ; Modelling ; Optimization ; Robustness ; Support vector machines ; System effectiveness ; Training ; Training data ; transductive multiview learning</subject><ispartof>IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.11226-11239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</citedby><cites>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</cites><orcidid>0000-0003-0836-7088 ; 0000-0001-8030-1660 ; 0000-0002-4029-3325 ; 0000-0001-5992-5444 ; 0000-0002-8393-6554 ; 0000-0002-0790-6492 ; 0000-0001-9548-0411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9442380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9442380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Deng, Zhaohong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Choi, Kup-Sze</creatorcontrib><creatorcontrib>Zhang, Te</creatorcontrib><creatorcontrib>Luo, Xiaoqing</creatorcontrib><creatorcontrib>Shen, Hongbin</creatorcontrib><creatorcontrib>Ying, Wenhao</creatorcontrib><creatorcontrib>Wang, Shitong</creatorcontrib><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><description>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</description><subject>Collaboratively learning</subject><subject>Factorization</subject><subject>fuzzy system</subject><subject>Fuzzy systems</subject><subject>Learning</subject><subject>Matrix decomposition</subject><subject>matrix factorization</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>System effectiveness</subject><subject>Training</subject><subject>Training data</subject><subject>transductive multiview learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1rGzEQxUVJaELiP6D0Iuglh9jR6GO1OjamaQM2geBSehJa7bhR2KwcSdt8_PVZ1yaHzuUNw-89Bh4hn4DNAJi5WM1_X8444zATTINU8IEcc6jqKedaHbzvlT4ik5zv2Tj1eDL1R3IkJJNCgTkmd6vk-twOvoS_SJdDN2rAJ7qMLXah_0N_hXJHr_uCaZOwuKZDejt0mM_p0pUUnumV8yWm8OpKiP05dX1L5zFuMLl_kQt0qR-DTsnh2nUZJ3s9IT-vvq3mP6aLm-_X86-LqReVKVOvPaBY61YaWWnt18rUoFrumffSm0aBAAW69UzWDmvPhHTKtE3TSOclZ-KEnO1yNyk-DpiLfQjZY9e5HuOQLVdCVgBSixH98h96H4fUj99ZrqESUnNZjRTsKJ9izgnXdpPCg0svFpjdNmG3TdhtE3bfxOj5vPMERHznjZRc1Ey8ARSbgv8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Wei</creator><creator>Deng, Zhaohong</creator><creator>Wang, Jun</creator><creator>Choi, Kup-Sze</creator><creator>Zhang, Te</creator><creator>Luo, Xiaoqing</creator><creator>Shen, Hongbin</creator><creator>Ying, Wenhao</creator><creator>Wang, Shitong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0836-7088</orcidid><orcidid>https://orcid.org/0000-0001-8030-1660</orcidid><orcidid>https://orcid.org/0000-0002-4029-3325</orcidid><orcidid>https://orcid.org/0000-0001-5992-5444</orcidid><orcidid>https://orcid.org/0000-0002-8393-6554</orcidid><orcidid>https://orcid.org/0000-0002-0790-6492</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></search><sort><creationdate>20221001</creationdate><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><author>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collaboratively learning</topic><topic>Factorization</topic><topic>fuzzy system</topic><topic>Fuzzy systems</topic><topic>Learning</topic><topic>Matrix decomposition</topic><topic>matrix factorization</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>System effectiveness</topic><topic>Training</topic><topic>Training data</topic><topic>transductive multiview learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Deng, Zhaohong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Choi, Kup-Sze</creatorcontrib><creatorcontrib>Zhang, Te</creatorcontrib><creatorcontrib>Luo, Xiaoqing</creatorcontrib><creatorcontrib>Shen, Hongbin</creatorcontrib><creatorcontrib>Ying, Wenhao</creatorcontrib><creatorcontrib>Wang, Shitong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wei</au><au>Deng, Zhaohong</au><au>Wang, Jun</au><au>Choi, Kup-Sze</au><au>Zhang, Te</au><au>Luo, Xiaoqing</au><au>Shen, Hongbin</au><au>Ying, Wenhao</au><au>Wang, Shitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>11226</spage><epage>11239</epage><pages>11226-11239</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34043519</pmid><doi>10.1109/TCYB.2021.3071451</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0836-7088</orcidid><orcidid>https://orcid.org/0000-0001-8030-1660</orcidid><orcidid>https://orcid.org/0000-0002-4029-3325</orcidid><orcidid>https://orcid.org/0000-0001-5992-5444</orcidid><orcidid>https://orcid.org/0000-0002-8393-6554</orcidid><orcidid>https://orcid.org/0000-0002-0790-6492</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.11226-11239
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2534611473
source IEEE Electronic Library (IEL)
subjects Collaboratively learning
Factorization
fuzzy system
Fuzzy systems
Learning
Matrix decomposition
matrix factorization
Modelling
Optimization
Robustness
Support vector machines
System effectiveness
Training
Training data
transductive multiview learning
title Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transductive%20Multiview%20Modeling%20With%20Interpretable%20Rules,%20Matrix%20Factorization,%20and%20Cooperative%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Wei&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=11226&rft.epage=11239&rft.pages=11226-11239&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3071451&rft_dat=%3Cproquest_RIE%3E2716347246%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716347246&rft_id=info:pmid/34043519&rft_ieee_id=9442380&rfr_iscdi=true