Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning
Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration betwe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2022-10, Vol.52 (10), p.11226-11239 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11239 |
---|---|
container_issue | 10 |
container_start_page | 11226 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Zhang, Wei Deng, Zhaohong Wang, Jun Choi, Kup-Sze Zhang, Te Luo, Xiaoqing Shen, Hongbin Ying, Wenhao Wang, Shitong |
description | Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods. |
doi_str_mv | 10.1109/TCYB.2021.3071451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534611473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9442380</ieee_id><sourcerecordid>2716347246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJaELiP6D0Iuglh9jR6GO1OjamaQM2geBSehJa7bhR2KwcSdt8_PVZ1yaHzuUNw-89Bh4hn4DNAJi5WM1_X8444zATTINU8IEcc6jqKedaHbzvlT4ik5zv2Tj1eDL1R3IkJJNCgTkmd6vk-twOvoS_SJdDN2rAJ7qMLXah_0N_hXJHr_uCaZOwuKZDejt0mM_p0pUUnumV8yWm8OpKiP05dX1L5zFuMLl_kQt0qR-DTsnh2nUZJ3s9IT-vvq3mP6aLm-_X86-LqReVKVOvPaBY61YaWWnt18rUoFrumffSm0aBAAW69UzWDmvPhHTKtE3TSOclZ-KEnO1yNyk-DpiLfQjZY9e5HuOQLVdCVgBSixH98h96H4fUj99ZrqESUnNZjRTsKJ9izgnXdpPCg0svFpjdNmG3TdhtE3bfxOj5vPMERHznjZRc1Ey8ARSbgv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716347246</pqid></control><display><type>article</type><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</creator><creatorcontrib>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</creatorcontrib><description>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3071451</identifier><identifier>PMID: 34043519</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Collaboratively learning ; Factorization ; fuzzy system ; Fuzzy systems ; Learning ; Matrix decomposition ; matrix factorization ; Modelling ; Optimization ; Robustness ; Support vector machines ; System effectiveness ; Training ; Training data ; transductive multiview learning</subject><ispartof>IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.11226-11239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</citedby><cites>FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</cites><orcidid>0000-0003-0836-7088 ; 0000-0001-8030-1660 ; 0000-0002-4029-3325 ; 0000-0001-5992-5444 ; 0000-0002-8393-6554 ; 0000-0002-0790-6492 ; 0000-0001-9548-0411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9442380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9442380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Deng, Zhaohong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Choi, Kup-Sze</creatorcontrib><creatorcontrib>Zhang, Te</creatorcontrib><creatorcontrib>Luo, Xiaoqing</creatorcontrib><creatorcontrib>Shen, Hongbin</creatorcontrib><creatorcontrib>Ying, Wenhao</creatorcontrib><creatorcontrib>Wang, Shitong</creatorcontrib><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><description>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</description><subject>Collaboratively learning</subject><subject>Factorization</subject><subject>fuzzy system</subject><subject>Fuzzy systems</subject><subject>Learning</subject><subject>Matrix decomposition</subject><subject>matrix factorization</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>System effectiveness</subject><subject>Training</subject><subject>Training data</subject><subject>transductive multiview learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1rGzEQxUVJaELiP6D0Iuglh9jR6GO1OjamaQM2geBSehJa7bhR2KwcSdt8_PVZ1yaHzuUNw-89Bh4hn4DNAJi5WM1_X8444zATTINU8IEcc6jqKedaHbzvlT4ik5zv2Tj1eDL1R3IkJJNCgTkmd6vk-twOvoS_SJdDN2rAJ7qMLXah_0N_hXJHr_uCaZOwuKZDejt0mM_p0pUUnumV8yWm8OpKiP05dX1L5zFuMLl_kQt0qR-DTsnh2nUZJ3s9IT-vvq3mP6aLm-_X86-LqReVKVOvPaBY61YaWWnt18rUoFrumffSm0aBAAW69UzWDmvPhHTKtE3TSOclZ-KEnO1yNyk-DpiLfQjZY9e5HuOQLVdCVgBSixH98h96H4fUj99ZrqESUnNZjRTsKJ9izgnXdpPCg0svFpjdNmG3TdhtE3bfxOj5vPMERHznjZRc1Ey8ARSbgv8</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Wei</creator><creator>Deng, Zhaohong</creator><creator>Wang, Jun</creator><creator>Choi, Kup-Sze</creator><creator>Zhang, Te</creator><creator>Luo, Xiaoqing</creator><creator>Shen, Hongbin</creator><creator>Ying, Wenhao</creator><creator>Wang, Shitong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0836-7088</orcidid><orcidid>https://orcid.org/0000-0001-8030-1660</orcidid><orcidid>https://orcid.org/0000-0002-4029-3325</orcidid><orcidid>https://orcid.org/0000-0001-5992-5444</orcidid><orcidid>https://orcid.org/0000-0002-8393-6554</orcidid><orcidid>https://orcid.org/0000-0002-0790-6492</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></search><sort><creationdate>20221001</creationdate><title>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</title><author>Zhang, Wei ; Deng, Zhaohong ; Wang, Jun ; Choi, Kup-Sze ; Zhang, Te ; Luo, Xiaoqing ; Shen, Hongbin ; Ying, Wenhao ; Wang, Shitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c7c1e3f7d494677cf59815d2c0cc4c9b5131517dc048ae8c034a59dbbb4ac4203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collaboratively learning</topic><topic>Factorization</topic><topic>fuzzy system</topic><topic>Fuzzy systems</topic><topic>Learning</topic><topic>Matrix decomposition</topic><topic>matrix factorization</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>System effectiveness</topic><topic>Training</topic><topic>Training data</topic><topic>transductive multiview learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Deng, Zhaohong</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Choi, Kup-Sze</creatorcontrib><creatorcontrib>Zhang, Te</creatorcontrib><creatorcontrib>Luo, Xiaoqing</creatorcontrib><creatorcontrib>Shen, Hongbin</creatorcontrib><creatorcontrib>Ying, Wenhao</creatorcontrib><creatorcontrib>Wang, Shitong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wei</au><au>Deng, Zhaohong</au><au>Wang, Jun</au><au>Choi, Kup-Sze</au><au>Zhang, Te</au><au>Luo, Xiaoqing</au><au>Shen, Hongbin</au><au>Ying, Wenhao</au><au>Wang, Shitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>11226</spage><epage>11239</epage><pages>11226-11239</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multiview fuzzy systems aim to deal with fuzzy modeling in multiview scenarios effectively and to obtain the interpretable model through multiview learning. However, current studies of multiview fuzzy systems still face several challenges, one of which is how to achieve efficient collaboration between multiple views when there are few labeled data. To address this challenge, this article explores a novel transductive multiview fuzzy modeling method. The dependency on labeled data is reduced by integrating transductive learning into the fuzzy model to simultaneously learn both the model and the labels using a novel learning criterion. Matrix factorization is incorporated to further improve the performance of the fuzzy model. In addition, collaborative learning between multiple views is used to enhance the robustness of the model. The experimental results indicate that the proposed method is highly competitive with other multiview learning methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>34043519</pmid><doi>10.1109/TCYB.2021.3071451</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0836-7088</orcidid><orcidid>https://orcid.org/0000-0001-8030-1660</orcidid><orcidid>https://orcid.org/0000-0002-4029-3325</orcidid><orcidid>https://orcid.org/0000-0001-5992-5444</orcidid><orcidid>https://orcid.org/0000-0002-8393-6554</orcidid><orcidid>https://orcid.org/0000-0002-0790-6492</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.11226-11239 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_2534611473 |
source | IEEE Electronic Library (IEL) |
subjects | Collaboratively learning Factorization fuzzy system Fuzzy systems Learning Matrix decomposition matrix factorization Modelling Optimization Robustness Support vector machines System effectiveness Training Training data transductive multiview learning |
title | Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transductive%20Multiview%20Modeling%20With%20Interpretable%20Rules,%20Matrix%20Factorization,%20and%20Cooperative%20Learning&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Wei&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=11226&rft.epage=11239&rft.pages=11226-11239&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3071451&rft_dat=%3Cproquest_RIE%3E2716347246%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716347246&rft_id=info:pmid/34043519&rft_ieee_id=9442380&rfr_iscdi=true |