Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International Journal of Cardiovascular Imaging 2021-11, Vol.37 (11), p.3145-3156
Hauptverfasser: Johri, Amer M., Mantella, Laura E., Jamthikar, Ankush D., Saba, Luca, Laird, John R., Suri, Jasjit S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3156
container_issue 11
container_start_page 3145
container_title The International Journal of Cardiovascular Imaging
container_volume 37
creator Johri, Amer M.
Mantella, Laura E.
Jamthikar, Ankush D.
Saba, Luca
Laird, John R.
Suri, Jasjit S.
description The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p 
doi_str_mv 10.1007/s10554-021-02294-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534610082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588784654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-631f357522c108f9c361e3a95c53d4373ff064b8d7c12284715bbfdd39933b103</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhgexYK3-AVcBN25G8zGZD3dSrAoFQdp1ODeT3KbmJmNOplB_cn-FZ3pFwYWLkBPynPe8yds0rwR_Kzgf3qHgWnctl4KWnKh60pwKPaiWD516utX91Oph6p41zxFvOeeSS3XaPHzL0bHsGZQafLABIgupuhjD3iXr6MAslDnkO0C7RiisBPzOluLmYGvIiUGaWV6rzQeH7xltCxBCF6R6AHsTkmujg5JC2j_CNqc7l7ZeGoYVasAaLNWwLCVTh0Pmc2H1xhEP8R4DbmLkI9cwszXWAphXkvIO6lqI33TJd4F2ifBjdSy5P47DT9iGvWhOPER0L3_vZ831xcer88_t5ddPX84_XLZWaVnbXgmv9KCltIKPfrKqF07BpK1Wc6cG5T3vu904D1ZIOXaD0Ludn2c1TUrtBFdnzZujLj2GnGA1h4CWfhTI04pGatX1lNooCX39D3qb10JP3qhxHMau1x1R8kjZkhGL82Yp4QDl3ghutvjNMX5D8ZvH-M3mQh2bkOC0d-Wv9H-6fgFtZ7nH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588784654</pqid></control><display><type>article</type><title>Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization</title><source>Springer Nature</source><creator>Johri, Amer M. ; Mantella, Laura E. ; Jamthikar, Ankush D. ; Saba, Luca ; Laird, John R. ; Suri, Jasjit S.</creator><creatorcontrib>Johri, Amer M. ; Mantella, Laura E. ; Jamthikar, Ankush D. ; Saba, Luca ; Laird, John R. ; Suri, Jasjit S.</creatorcontrib><description>The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p &lt; 0.0001), TPA (OR = 1.61, p &lt; 0.0001), and IPN (OR = 2.78, p &lt; 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p &lt; 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~  3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p &lt; 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~  17.8% over the Cox-based model (0.86 vs . 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.</description><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1573-0743</identifier><identifier>EISSN: 1875-8312</identifier><identifier>DOI: 10.1007/s10554-021-02294-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Angiography ; Artificial intelligence ; Cardiac Imaging ; Cardiology ; Cardiovascular disease ; Cardiovascular diseases ; Coronary artery ; Coronary artery disease ; Health hazards ; Health risks ; Heart diseases ; Imaging ; Learning algorithms ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Multivariate analysis ; Original Paper ; Phenotypes ; Predictions ; Radiology ; Statistical methods ; Statistical models ; Statistical prediction ; Statistics ; Survival ; Survival analysis ; Ultrasonic imaging ; Ultrasound ; Vascularization</subject><ispartof>The International Journal of Cardiovascular Imaging, 2021-11, Vol.37 (11), p.3145-3156</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-631f357522c108f9c361e3a95c53d4373ff064b8d7c12284715bbfdd39933b103</citedby><cites>FETCH-LOGICAL-c352t-631f357522c108f9c361e3a95c53d4373ff064b8d7c12284715bbfdd39933b103</cites><orcidid>0000-0001-6499-396X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10554-021-02294-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10554-021-02294-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Johri, Amer M.</creatorcontrib><creatorcontrib>Mantella, Laura E.</creatorcontrib><creatorcontrib>Jamthikar, Ankush D.</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Laird, John R.</creatorcontrib><creatorcontrib>Suri, Jasjit S.</creatorcontrib><title>Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization</title><title>The International Journal of Cardiovascular Imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><description>The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p &lt; 0.0001), TPA (OR = 1.61, p &lt; 0.0001), and IPN (OR = 2.78, p &lt; 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p &lt; 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~  3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p &lt; 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~  17.8% over the Cox-based model (0.86 vs . 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.</description><subject>Algorithms</subject><subject>Angiography</subject><subject>Artificial intelligence</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Health hazards</subject><subject>Health risks</subject><subject>Heart diseases</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Multivariate analysis</subject><subject>Original Paper</subject><subject>Phenotypes</subject><subject>Predictions</subject><subject>Radiology</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical prediction</subject><subject>Statistics</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Vascularization</subject><issn>1569-5794</issn><issn>1573-0743</issn><issn>1875-8312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kU1rFTEUhgexYK3-AVcBN25G8zGZD3dSrAoFQdp1ODeT3KbmJmNOplB_cn-FZ3pFwYWLkBPynPe8yds0rwR_Kzgf3qHgWnctl4KWnKh60pwKPaiWD516utX91Oph6p41zxFvOeeSS3XaPHzL0bHsGZQafLABIgupuhjD3iXr6MAslDnkO0C7RiisBPzOluLmYGvIiUGaWV6rzQeH7xltCxBCF6R6AHsTkmujg5JC2j_CNqc7l7ZeGoYVasAaLNWwLCVTh0Pmc2H1xhEP8R4DbmLkI9cwszXWAphXkvIO6lqI33TJd4F2ifBjdSy5P47DT9iGvWhOPER0L3_vZ831xcer88_t5ddPX84_XLZWaVnbXgmv9KCltIKPfrKqF07BpK1Wc6cG5T3vu904D1ZIOXaD0Ludn2c1TUrtBFdnzZujLj2GnGA1h4CWfhTI04pGatX1lNooCX39D3qb10JP3qhxHMau1x1R8kjZkhGL82Yp4QDl3ghutvjNMX5D8ZvH-M3mQh2bkOC0d-Wv9H-6fgFtZ7nH</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Johri, Amer M.</creator><creator>Mantella, Laura E.</creator><creator>Jamthikar, Ankush D.</creator><creator>Saba, Luca</creator><creator>Laird, John R.</creator><creator>Suri, Jasjit S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6499-396X</orcidid></search><sort><creationdate>20211101</creationdate><title>Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization</title><author>Johri, Amer M. ; Mantella, Laura E. ; Jamthikar, Ankush D. ; Saba, Luca ; Laird, John R. ; Suri, Jasjit S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-631f357522c108f9c361e3a95c53d4373ff064b8d7c12284715bbfdd39933b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Angiography</topic><topic>Artificial intelligence</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Health hazards</topic><topic>Health risks</topic><topic>Heart diseases</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Multivariate analysis</topic><topic>Original Paper</topic><topic>Phenotypes</topic><topic>Predictions</topic><topic>Radiology</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical prediction</topic><topic>Statistics</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johri, Amer M.</creatorcontrib><creatorcontrib>Mantella, Laura E.</creatorcontrib><creatorcontrib>Jamthikar, Ankush D.</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Laird, John R.</creatorcontrib><creatorcontrib>Suri, Jasjit S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The International Journal of Cardiovascular Imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johri, Amer M.</au><au>Mantella, Laura E.</au><au>Jamthikar, Ankush D.</au><au>Saba, Luca</au><au>Laird, John R.</au><au>Suri, Jasjit S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization</atitle><jtitle>The International Journal of Cardiovascular Imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>37</volume><issue>11</issue><spage>3145</spage><epage>3156</epage><pages>3145-3156</pages><issn>1569-5794</issn><eissn>1573-0743</eissn><eissn>1875-8312</eissn><abstract>The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p &lt; 0.0001), TPA (OR = 1.61, p &lt; 0.0001), and IPN (OR = 2.78, p &lt; 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p &lt; 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~  3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p &lt; 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~  17.8% over the Cox-based model (0.86 vs . 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10554-021-02294-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6499-396X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-5794
ispartof The International Journal of Cardiovascular Imaging, 2021-11, Vol.37 (11), p.3145-3156
issn 1569-5794
1573-0743
1875-8312
language eng
recordid cdi_proquest_miscellaneous_2534610082
source Springer Nature
subjects Algorithms
Angiography
Artificial intelligence
Cardiac Imaging
Cardiology
Cardiovascular disease
Cardiovascular diseases
Coronary artery
Coronary artery disease
Health hazards
Health risks
Heart diseases
Imaging
Learning algorithms
Machine learning
Medicine
Medicine & Public Health
Multivariate analysis
Original Paper
Phenotypes
Predictions
Radiology
Statistical methods
Statistical models
Statistical prediction
Statistics
Survival
Survival analysis
Ultrasonic imaging
Ultrasound
Vascularization
title Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20artificial%20intelligence%20in%20cardiovascular%20risk%20prediction%20and%20outcomes:%20comparison%20of%20machine-learning%20and%20conventional%20statistical%20approaches%20for%20the%20analysis%20of%20carotid%20ultrasound%20features%20and%20intra-plaque%20neovascularization&rft.jtitle=The%20International%20Journal%20of%20Cardiovascular%20Imaging&rft.au=Johri,%20Amer%20M.&rft.date=2021-11-01&rft.volume=37&rft.issue=11&rft.spage=3145&rft.epage=3156&rft.pages=3145-3156&rft.issn=1569-5794&rft.eissn=1573-0743&rft_id=info:doi/10.1007/s10554-021-02294-0&rft_dat=%3Cproquest_cross%3E2588784654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588784654&rft_id=info:pmid/&rfr_iscdi=true