Genome structural evolution in Brassica crops

The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2021-06, Vol.7 (6), p.757-765
Hauptverfasser: He, Zhesi, Ji, Ruiqin, Havlickova, Lenka, Wang, Lihong, Li, Yi, Lee, Huey Tyng, Song, Jiaming, Koh, Chushin, Yang, Jinghua, Zhang, Mingfang, Parkin, Isobel A. P., Wang, Xiaowu, Edwards, David, King, Graham J., Zou, Jun, Liu, Kede, Snowdon, Rod J., Banga, Surinder S., Machackova, Ivana, Bancroft, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 6
container_start_page 757
container_title Nature plants
container_volume 7
creator He, Zhesi
Ji, Ruiqin
Havlickova, Lenka
Wang, Lihong
Li, Yi
Lee, Huey Tyng
Song, Jiaming
Koh, Chushin
Yang, Jinghua
Zhang, Mingfang
Parkin, Isobel A. P.
Wang, Xiaowu
Edwards, David
King, Graham J.
Zou, Jun
Liu, Kede
Snowdon, Rod J.
Banga, Surinder S.
Machackova, Ivana
Bancroft, Ian
description The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids. Correcting organizational errors of the Brassica A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.
doi_str_mv 10.1038/s41477-021-00928-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534609786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541557586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EolXpH2BAkVhYAuev2BmhKgWpEgvMlmMclCqJix0j8e8xTfkQA5NP9nPv-R6ETjFcYqDyKjDMhMiB4BygJDKXB2hKgPN0JeThr3qC5iFsAAALzmkBx2hCGTAuoJiifGV719ksDD6aIXrdZvbNtXFoXJ81fXbjdQiN0ZnxbhtO0FGt22Dn-3OGnm6Xj4u7fP2wul9cr3PDcDnk3IAlYHRFpKai5AWrRVlJCkSyWhpqiamIoIQSAJsow8FibAAXIHVJKzpDF2Pu1rvXaMOguiYY27a6ty4GRThlBZRCFgk9_4NuXPR9-l2iGOZc8B1FRiqtEYK3tdr6ptP-XWFQnz7V6FMln2rnU8nUdLaPjlVnn79bvuwlgI5ASE_9i_U_s_-J_QAroH12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541557586</pqid></control><display><type>article</type><title>Genome structural evolution in Brassica crops</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</creator><creatorcontrib>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</creatorcontrib><description>The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids. Correcting organizational errors of the Brassica A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00928-8</identifier><identifier>PMID: 34045706</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/2491/3933 ; 631/449/2669 ; Biological Evolution ; Biomedical and Life Sciences ; Brassica ; Brassica - genetics ; Crops ; Crops, Agricultural - genetics ; Evolution ; Genes, Plant ; Genetic Introgression ; Genome, Plant ; Genomes ; Genomics ; Karyotypes ; Life Sciences ; Nomenclature ; Oilseeds ; Plant breeding ; Plant Sciences ; Polyploidy ; Species</subject><ispartof>Nature plants, 2021-06, Vol.7 (6), p.757-765</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</citedby><cites>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</cites><orcidid>0000-0001-7599-6760 ; 0000-0002-5874-8615 ; 0000-0001-5577-7616 ; 0000-0002-5975-6051 ; 0000-0001-8209-7341 ; 0000-0001-7707-1171 ; 0000-0001-8335-9876 ; 0000-0003-0686-8882 ; 0000-0001-6753-227X ; 0000-0002-5807-9466 ; 0000-0002-1395-2049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00928-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00928-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34045706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Ji, Ruiqin</creatorcontrib><creatorcontrib>Havlickova, Lenka</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Lee, Huey Tyng</creatorcontrib><creatorcontrib>Song, Jiaming</creatorcontrib><creatorcontrib>Koh, Chushin</creatorcontrib><creatorcontrib>Yang, Jinghua</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Liu, Kede</creatorcontrib><creatorcontrib>Snowdon, Rod J.</creatorcontrib><creatorcontrib>Banga, Surinder S.</creatorcontrib><creatorcontrib>Machackova, Ivana</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><title>Genome structural evolution in Brassica crops</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids. Correcting organizational errors of the Brassica A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</description><subject>631/449/2491/3933</subject><subject>631/449/2669</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica - genetics</subject><subject>Crops</subject><subject>Crops, Agricultural - genetics</subject><subject>Evolution</subject><subject>Genes, Plant</subject><subject>Genetic Introgression</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Karyotypes</subject><subject>Life Sciences</subject><subject>Nomenclature</subject><subject>Oilseeds</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Polyploidy</subject><subject>Species</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EolXpH2BAkVhYAuev2BmhKgWpEgvMlmMclCqJix0j8e8xTfkQA5NP9nPv-R6ETjFcYqDyKjDMhMiB4BygJDKXB2hKgPN0JeThr3qC5iFsAAALzmkBx2hCGTAuoJiifGV719ksDD6aIXrdZvbNtXFoXJ81fXbjdQiN0ZnxbhtO0FGt22Dn-3OGnm6Xj4u7fP2wul9cr3PDcDnk3IAlYHRFpKai5AWrRVlJCkSyWhpqiamIoIQSAJsow8FibAAXIHVJKzpDF2Pu1rvXaMOguiYY27a6ty4GRThlBZRCFgk9_4NuXPR9-l2iGOZc8B1FRiqtEYK3tdr6ptP-XWFQnz7V6FMln2rnU8nUdLaPjlVnn79bvuwlgI5ASE_9i_U_s_-J_QAroH12</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>He, Zhesi</creator><creator>Ji, Ruiqin</creator><creator>Havlickova, Lenka</creator><creator>Wang, Lihong</creator><creator>Li, Yi</creator><creator>Lee, Huey Tyng</creator><creator>Song, Jiaming</creator><creator>Koh, Chushin</creator><creator>Yang, Jinghua</creator><creator>Zhang, Mingfang</creator><creator>Parkin, Isobel A. P.</creator><creator>Wang, Xiaowu</creator><creator>Edwards, David</creator><creator>King, Graham J.</creator><creator>Zou, Jun</creator><creator>Liu, Kede</creator><creator>Snowdon, Rod J.</creator><creator>Banga, Surinder S.</creator><creator>Machackova, Ivana</creator><creator>Bancroft, Ian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0002-5874-8615</orcidid><orcidid>https://orcid.org/0000-0001-5577-7616</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0001-8209-7341</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0003-0686-8882</orcidid><orcidid>https://orcid.org/0000-0001-6753-227X</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid><orcidid>https://orcid.org/0000-0002-1395-2049</orcidid></search><sort><creationdate>20210601</creationdate><title>Genome structural evolution in Brassica crops</title><author>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/449/2491/3933</topic><topic>631/449/2669</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica - genetics</topic><topic>Crops</topic><topic>Crops, Agricultural - genetics</topic><topic>Evolution</topic><topic>Genes, Plant</topic><topic>Genetic Introgression</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Karyotypes</topic><topic>Life Sciences</topic><topic>Nomenclature</topic><topic>Oilseeds</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Polyploidy</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Ji, Ruiqin</creatorcontrib><creatorcontrib>Havlickova, Lenka</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Lee, Huey Tyng</creatorcontrib><creatorcontrib>Song, Jiaming</creatorcontrib><creatorcontrib>Koh, Chushin</creatorcontrib><creatorcontrib>Yang, Jinghua</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Liu, Kede</creatorcontrib><creatorcontrib>Snowdon, Rod J.</creatorcontrib><creatorcontrib>Banga, Surinder S.</creatorcontrib><creatorcontrib>Machackova, Ivana</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhesi</au><au>Ji, Ruiqin</au><au>Havlickova, Lenka</au><au>Wang, Lihong</au><au>Li, Yi</au><au>Lee, Huey Tyng</au><au>Song, Jiaming</au><au>Koh, Chushin</au><au>Yang, Jinghua</au><au>Zhang, Mingfang</au><au>Parkin, Isobel A. P.</au><au>Wang, Xiaowu</au><au>Edwards, David</au><au>King, Graham J.</au><au>Zou, Jun</au><au>Liu, Kede</au><au>Snowdon, Rod J.</au><au>Banga, Surinder S.</au><au>Machackova, Ivana</au><au>Bancroft, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome structural evolution in Brassica crops</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>6</issue><spage>757</spage><epage>765</epage><pages>757-765</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the Brassica mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated Brassica species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of Brassica crops but also provide an exemplar for the study of other polyploids. Correcting organizational errors of the Brassica A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34045706</pmid><doi>10.1038/s41477-021-00928-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0002-5874-8615</orcidid><orcidid>https://orcid.org/0000-0001-5577-7616</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0001-8209-7341</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0003-0686-8882</orcidid><orcidid>https://orcid.org/0000-0001-6753-227X</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid><orcidid>https://orcid.org/0000-0002-1395-2049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2021-06, Vol.7 (6), p.757-765
issn 2055-0278
2055-0278
language eng
recordid cdi_proquest_miscellaneous_2534609786
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/449/2491/3933
631/449/2669
Biological Evolution
Biomedical and Life Sciences
Brassica
Brassica - genetics
Crops
Crops, Agricultural - genetics
Evolution
Genes, Plant
Genetic Introgression
Genome, Plant
Genomes
Genomics
Karyotypes
Life Sciences
Nomenclature
Oilseeds
Plant breeding
Plant Sciences
Polyploidy
Species
title Genome structural evolution in Brassica crops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20structural%20evolution%20in%20Brassica%20crops&rft.jtitle=Nature%20plants&rft.au=He,%20Zhesi&rft.date=2021-06-01&rft.volume=7&rft.issue=6&rft.spage=757&rft.epage=765&rft.pages=757-765&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00928-8&rft_dat=%3Cproquest_cross%3E2541557586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541557586&rft_id=info:pmid/34045706&rfr_iscdi=true