Genome structural evolution in Brassica crops
The cultivated Brassica species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the Brassica species. With organizational errors (such as misplaced g...
Gespeichert in:
Veröffentlicht in: | Nature plants 2021-06, Vol.7 (6), p.757-765 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 6 |
container_start_page | 757 |
container_title | Nature plants |
container_volume | 7 |
creator | He, Zhesi Ji, Ruiqin Havlickova, Lenka Wang, Lihong Li, Yi Lee, Huey Tyng Song, Jiaming Koh, Chushin Yang, Jinghua Zhang, Mingfang Parkin, Isobel A. P. Wang, Xiaowu Edwards, David King, Graham J. Zou, Jun Liu, Kede Snowdon, Rod J. Banga, Surinder S. Machackova, Ivana Bancroft, Ian |
description | The cultivated
Brassica
species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the
Brassica
species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the
Brassica
mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated
Brassica
species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of
Brassica
crops but also provide an exemplar for the study of other polyploids.
Correcting organizational errors of the
Brassica
A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions. |
doi_str_mv | 10.1038/s41477-021-00928-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2534609786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541557586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EolXpH2BAkVhYAuev2BmhKgWpEgvMlmMclCqJix0j8e8xTfkQA5NP9nPv-R6ETjFcYqDyKjDMhMiB4BygJDKXB2hKgPN0JeThr3qC5iFsAAALzmkBx2hCGTAuoJiifGV719ksDD6aIXrdZvbNtXFoXJ81fXbjdQiN0ZnxbhtO0FGt22Dn-3OGnm6Xj4u7fP2wul9cr3PDcDnk3IAlYHRFpKai5AWrRVlJCkSyWhpqiamIoIQSAJsow8FibAAXIHVJKzpDF2Pu1rvXaMOguiYY27a6ty4GRThlBZRCFgk9_4NuXPR9-l2iGOZc8B1FRiqtEYK3tdr6ptP-XWFQnz7V6FMln2rnU8nUdLaPjlVnn79bvuwlgI5ASE_9i_U_s_-J_QAroH12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541557586</pqid></control><display><type>article</type><title>Genome structural evolution in Brassica crops</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</creator><creatorcontrib>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</creatorcontrib><description>The cultivated
Brassica
species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the
Brassica
species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the
Brassica
mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated
Brassica
species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of
Brassica
crops but also provide an exemplar for the study of other polyploids.
Correcting organizational errors of the
Brassica
A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00928-8</identifier><identifier>PMID: 34045706</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/2491/3933 ; 631/449/2669 ; Biological Evolution ; Biomedical and Life Sciences ; Brassica ; Brassica - genetics ; Crops ; Crops, Agricultural - genetics ; Evolution ; Genes, Plant ; Genetic Introgression ; Genome, Plant ; Genomes ; Genomics ; Karyotypes ; Life Sciences ; Nomenclature ; Oilseeds ; Plant breeding ; Plant Sciences ; Polyploidy ; Species</subject><ispartof>Nature plants, 2021-06, Vol.7 (6), p.757-765</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</citedby><cites>FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</cites><orcidid>0000-0001-7599-6760 ; 0000-0002-5874-8615 ; 0000-0001-5577-7616 ; 0000-0002-5975-6051 ; 0000-0001-8209-7341 ; 0000-0001-7707-1171 ; 0000-0001-8335-9876 ; 0000-0003-0686-8882 ; 0000-0001-6753-227X ; 0000-0002-5807-9466 ; 0000-0002-1395-2049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00928-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00928-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34045706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Ji, Ruiqin</creatorcontrib><creatorcontrib>Havlickova, Lenka</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Lee, Huey Tyng</creatorcontrib><creatorcontrib>Song, Jiaming</creatorcontrib><creatorcontrib>Koh, Chushin</creatorcontrib><creatorcontrib>Yang, Jinghua</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Liu, Kede</creatorcontrib><creatorcontrib>Snowdon, Rod J.</creatorcontrib><creatorcontrib>Banga, Surinder S.</creatorcontrib><creatorcontrib>Machackova, Ivana</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><title>Genome structural evolution in Brassica crops</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>The cultivated
Brassica
species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the
Brassica
species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the
Brassica
mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated
Brassica
species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of
Brassica
crops but also provide an exemplar for the study of other polyploids.
Correcting organizational errors of the
Brassica
A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</description><subject>631/449/2491/3933</subject><subject>631/449/2669</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica - genetics</subject><subject>Crops</subject><subject>Crops, Agricultural - genetics</subject><subject>Evolution</subject><subject>Genes, Plant</subject><subject>Genetic Introgression</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Karyotypes</subject><subject>Life Sciences</subject><subject>Nomenclature</subject><subject>Oilseeds</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Polyploidy</subject><subject>Species</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EolXpH2BAkVhYAuev2BmhKgWpEgvMlmMclCqJix0j8e8xTfkQA5NP9nPv-R6ETjFcYqDyKjDMhMiB4BygJDKXB2hKgPN0JeThr3qC5iFsAAALzmkBx2hCGTAuoJiifGV719ksDD6aIXrdZvbNtXFoXJ81fXbjdQiN0ZnxbhtO0FGt22Dn-3OGnm6Xj4u7fP2wul9cr3PDcDnk3IAlYHRFpKai5AWrRVlJCkSyWhpqiamIoIQSAJsow8FibAAXIHVJKzpDF2Pu1rvXaMOguiYY27a6ty4GRThlBZRCFgk9_4NuXPR9-l2iGOZc8B1FRiqtEYK3tdr6ptP-XWFQnz7V6FMln2rnU8nUdLaPjlVnn79bvuwlgI5ASE_9i_U_s_-J_QAroH12</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>He, Zhesi</creator><creator>Ji, Ruiqin</creator><creator>Havlickova, Lenka</creator><creator>Wang, Lihong</creator><creator>Li, Yi</creator><creator>Lee, Huey Tyng</creator><creator>Song, Jiaming</creator><creator>Koh, Chushin</creator><creator>Yang, Jinghua</creator><creator>Zhang, Mingfang</creator><creator>Parkin, Isobel A. P.</creator><creator>Wang, Xiaowu</creator><creator>Edwards, David</creator><creator>King, Graham J.</creator><creator>Zou, Jun</creator><creator>Liu, Kede</creator><creator>Snowdon, Rod J.</creator><creator>Banga, Surinder S.</creator><creator>Machackova, Ivana</creator><creator>Bancroft, Ian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0002-5874-8615</orcidid><orcidid>https://orcid.org/0000-0001-5577-7616</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0001-8209-7341</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0003-0686-8882</orcidid><orcidid>https://orcid.org/0000-0001-6753-227X</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid><orcidid>https://orcid.org/0000-0002-1395-2049</orcidid></search><sort><creationdate>20210601</creationdate><title>Genome structural evolution in Brassica crops</title><author>He, Zhesi ; Ji, Ruiqin ; Havlickova, Lenka ; Wang, Lihong ; Li, Yi ; Lee, Huey Tyng ; Song, Jiaming ; Koh, Chushin ; Yang, Jinghua ; Zhang, Mingfang ; Parkin, Isobel A. P. ; Wang, Xiaowu ; Edwards, David ; King, Graham J. ; Zou, Jun ; Liu, Kede ; Snowdon, Rod J. ; Banga, Surinder S. ; Machackova, Ivana ; Bancroft, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-5c0e20cab28a379564f79b830284f8c3e2cb27323200eab2c50e11c01608a93b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/449/2491/3933</topic><topic>631/449/2669</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica - genetics</topic><topic>Crops</topic><topic>Crops, Agricultural - genetics</topic><topic>Evolution</topic><topic>Genes, Plant</topic><topic>Genetic Introgression</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Karyotypes</topic><topic>Life Sciences</topic><topic>Nomenclature</topic><topic>Oilseeds</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Polyploidy</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Ji, Ruiqin</creatorcontrib><creatorcontrib>Havlickova, Lenka</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Lee, Huey Tyng</creatorcontrib><creatorcontrib>Song, Jiaming</creatorcontrib><creatorcontrib>Koh, Chushin</creatorcontrib><creatorcontrib>Yang, Jinghua</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Liu, Kede</creatorcontrib><creatorcontrib>Snowdon, Rod J.</creatorcontrib><creatorcontrib>Banga, Surinder S.</creatorcontrib><creatorcontrib>Machackova, Ivana</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhesi</au><au>Ji, Ruiqin</au><au>Havlickova, Lenka</au><au>Wang, Lihong</au><au>Li, Yi</au><au>Lee, Huey Tyng</au><au>Song, Jiaming</au><au>Koh, Chushin</au><au>Yang, Jinghua</au><au>Zhang, Mingfang</au><au>Parkin, Isobel A. P.</au><au>Wang, Xiaowu</au><au>Edwards, David</au><au>King, Graham J.</au><au>Zou, Jun</au><au>Liu, Kede</au><au>Snowdon, Rod J.</au><au>Banga, Surinder S.</au><au>Machackova, Ivana</au><au>Bancroft, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome structural evolution in Brassica crops</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>7</volume><issue>6</issue><spage>757</spage><epage>765</epage><pages>757-765</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>The cultivated
Brassica
species include numerous vegetable and oil crops of global importance. Three genomes (designated A, B and C) share mesohexapolyploid ancestry and occur both singly and in each pairwise combination to define the
Brassica
species. With organizational errors (such as misplaced genome segments) corrected, we showed that the fundamental structure of each of the genomes is the same, irrespective of the species in which it occurs. This enabled us to clarify genome evolutionary pathways, including updating the Ancestral Crucifer Karyotype (ACK) block organization and providing support for the
Brassica
mesohexaploidy having occurred via a two-step process. We then constructed genus-wide pan-genomes, drawing from genes present in any species in which the respective genome occurs, which enabled us to provide a global gene nomenclature system for the cultivated
Brassica
species and develop a methodology to cost-effectively elucidate the genomic impacts of alien introgressions. Our advances not only underpin knowledge-based approaches to the more efficient breeding of
Brassica
crops but also provide an exemplar for the study of other polyploids.
Correcting organizational errors of the
Brassica
A, B and C genomes reveals the conserved structure of each genome across species and genome evolutionary pathways. Genus-wide pan-genomes were constructed, helping to elucidate the genomic impacts of alien introgressions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34045706</pmid><doi>10.1038/s41477-021-00928-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0002-5874-8615</orcidid><orcidid>https://orcid.org/0000-0001-5577-7616</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0001-8209-7341</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0003-0686-8882</orcidid><orcidid>https://orcid.org/0000-0001-6753-227X</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid><orcidid>https://orcid.org/0000-0002-1395-2049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2021-06, Vol.7 (6), p.757-765 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2534609786 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/449/2491/3933 631/449/2669 Biological Evolution Biomedical and Life Sciences Brassica Brassica - genetics Crops Crops, Agricultural - genetics Evolution Genes, Plant Genetic Introgression Genome, Plant Genomes Genomics Karyotypes Life Sciences Nomenclature Oilseeds Plant breeding Plant Sciences Polyploidy Species |
title | Genome structural evolution in Brassica crops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20structural%20evolution%20in%20Brassica%20crops&rft.jtitle=Nature%20plants&rft.au=He,%20Zhesi&rft.date=2021-06-01&rft.volume=7&rft.issue=6&rft.spage=757&rft.epage=765&rft.pages=757-765&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00928-8&rft_dat=%3Cproquest_cross%3E2541557586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541557586&rft_id=info:pmid/34045706&rfr_iscdi=true |