Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics

In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-06, Vol.15 (6), p.9482-9494
Hauptverfasser: Shi, Yuanyuan, Groven, Benjamin, Serron, Jill, Wu, Xiangyu, Nalin Mehta, Ankit, Minj, Albert, Sergeant, Stefanie, Han, Han, Asselberghs, Inge, Lin, Dennis, Brems, Steven, Huyghebaert, Cedric, Morin, Pierre, Radu, Iuliana, Caymax, Matty
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9494
container_issue 6
container_start_page 9482
container_title ACS nano
container_volume 15
creator Shi, Yuanyuan
Groven, Benjamin
Serron, Jill
Wu, Xiangyu
Nalin Mehta, Ankit
Minj, Albert
Sergeant, Stefanie
Han, Han
Asselberghs, Inge
Lin, Dennis
Brems, Steven
Huyghebaert, Cedric
Morin, Pierre
Radu, Iuliana
Caymax, Matty
description In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.
doi_str_mv 10.1021/acsnano.0c07761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2533318551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533318551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</originalsourceid><addsrcrecordid>eNp1UMlOwzAQjRBIQOHM1UcklNaOnTg5VqUsEpvUIrhFU2fSGiV2sFOWj-CfcdWKG6eZeZtGL4rOGB0ymrARKG_A2CFVVMqM7UVHrOBZTPPsdf9vT9lhdOz9G6WpzGV2FP1MzVIbRKfNkrxAjS6eKWiQTDvdw5eGhsw_bXypWzReWxPue-iDHBpP-pWz6-WKzKDrVtohmWPbNYEmM-UQzSazto6Mqw8wCityo5er-AldANsNQh7Cx9ig6p01WvmT6KAOwXi6m4Po-Wo6n9zEd4_Xt5PxXQyc0T4ualExzkBSWVRCKaS8EJDUKVdMiDrLIRWLBU0US0BKmqksEcWiShFyKbKF4IPofJvbOfu-Rt-XrfYKmwYM2rUvk5RzzvI0ZUE62kqVs947rMvO6Rbcd8louSm-3BVf7ooPjoutIxDlm127UJr_V_0LIjmJUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533318551</pqid></control><display><type>article</type><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><source>ACS Publications</source><creator>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</creator><creatorcontrib>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</creatorcontrib><description>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c07761</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-06, Vol.15 (6), p.9482-9494</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</citedby><cites>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</cites><orcidid>0000-0001-9923-0903 ; 0000-0002-5781-7594 ; 0000-0002-2169-940X ; 0000-0003-0878-3276 ; 0000-0002-4836-6752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c07761$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c07761$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Groven, Benjamin</creatorcontrib><creatorcontrib>Serron, Jill</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Nalin Mehta, Ankit</creatorcontrib><creatorcontrib>Minj, Albert</creatorcontrib><creatorcontrib>Sergeant, Stefanie</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Asselberghs, Inge</creatorcontrib><creatorcontrib>Lin, Dennis</creatorcontrib><creatorcontrib>Brems, Steven</creatorcontrib><creatorcontrib>Huyghebaert, Cedric</creatorcontrib><creatorcontrib>Morin, Pierre</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQjRBIQOHM1UcklNaOnTg5VqUsEpvUIrhFU2fSGiV2sFOWj-CfcdWKG6eZeZtGL4rOGB0ymrARKG_A2CFVVMqM7UVHrOBZTPPsdf9vT9lhdOz9G6WpzGV2FP1MzVIbRKfNkrxAjS6eKWiQTDvdw5eGhsw_bXypWzReWxPue-iDHBpP-pWz6-WKzKDrVtohmWPbNYEmM-UQzSazto6Mqw8wCityo5er-AldANsNQh7Cx9ig6p01WvmT6KAOwXi6m4Po-Wo6n9zEd4_Xt5PxXQyc0T4ualExzkBSWVRCKaS8EJDUKVdMiDrLIRWLBU0US0BKmqksEcWiShFyKbKF4IPofJvbOfu-Rt-XrfYKmwYM2rUvk5RzzvI0ZUE62kqVs947rMvO6Rbcd8louSm-3BVf7ooPjoutIxDlm127UJr_V_0LIjmJUA</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Shi, Yuanyuan</creator><creator>Groven, Benjamin</creator><creator>Serron, Jill</creator><creator>Wu, Xiangyu</creator><creator>Nalin Mehta, Ankit</creator><creator>Minj, Albert</creator><creator>Sergeant, Stefanie</creator><creator>Han, Han</creator><creator>Asselberghs, Inge</creator><creator>Lin, Dennis</creator><creator>Brems, Steven</creator><creator>Huyghebaert, Cedric</creator><creator>Morin, Pierre</creator><creator>Radu, Iuliana</creator><creator>Caymax, Matty</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9923-0903</orcidid><orcidid>https://orcid.org/0000-0002-5781-7594</orcidid><orcidid>https://orcid.org/0000-0002-2169-940X</orcidid><orcidid>https://orcid.org/0000-0003-0878-3276</orcidid><orcidid>https://orcid.org/0000-0002-4836-6752</orcidid></search><sort><creationdate>20210622</creationdate><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><author>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Groven, Benjamin</creatorcontrib><creatorcontrib>Serron, Jill</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Nalin Mehta, Ankit</creatorcontrib><creatorcontrib>Minj, Albert</creatorcontrib><creatorcontrib>Sergeant, Stefanie</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Asselberghs, Inge</creatorcontrib><creatorcontrib>Lin, Dennis</creatorcontrib><creatorcontrib>Brems, Steven</creatorcontrib><creatorcontrib>Huyghebaert, Cedric</creatorcontrib><creatorcontrib>Morin, Pierre</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yuanyuan</au><au>Groven, Benjamin</au><au>Serron, Jill</au><au>Wu, Xiangyu</au><au>Nalin Mehta, Ankit</au><au>Minj, Albert</au><au>Sergeant, Stefanie</au><au>Han, Han</au><au>Asselberghs, Inge</au><au>Lin, Dennis</au><au>Brems, Steven</au><au>Huyghebaert, Cedric</au><au>Morin, Pierre</au><au>Radu, Iuliana</au><au>Caymax, Matty</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>9482</spage><epage>9494</epage><pages>9482-9494</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c07761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9923-0903</orcidid><orcidid>https://orcid.org/0000-0002-5781-7594</orcidid><orcidid>https://orcid.org/0000-0002-2169-940X</orcidid><orcidid>https://orcid.org/0000-0003-0878-3276</orcidid><orcidid>https://orcid.org/0000-0002-4836-6752</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-06, Vol.15 (6), p.9482-9494
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2533318551
source ACS Publications
title Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Wafer-Scale%20Epitaxial%20Two-Dimensional%20Materials%20through%20Sapphire%20Template%20Screening%20for%20Advanced%20High-Performance%20Nanoelectronics&rft.jtitle=ACS%20nano&rft.au=Shi,%20Yuanyuan&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=9482&rft.epage=9494&rft.pages=9482-9494&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c07761&rft_dat=%3Cproquest_cross%3E2533318551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533318551&rft_id=info:pmid/&rfr_iscdi=true