Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics
In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelect...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-06, Vol.15 (6), p.9482-9494 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9494 |
---|---|
container_issue | 6 |
container_start_page | 9482 |
container_title | ACS nano |
container_volume | 15 |
creator | Shi, Yuanyuan Groven, Benjamin Serron, Jill Wu, Xiangyu Nalin Mehta, Ankit Minj, Albert Sergeant, Stefanie Han, Han Asselberghs, Inge Lin, Dennis Brems, Steven Huyghebaert, Cedric Morin, Pierre Radu, Iuliana Caymax, Matty |
description | In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties. |
doi_str_mv | 10.1021/acsnano.0c07761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2533318551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2533318551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</originalsourceid><addsrcrecordid>eNp1UMlOwzAQjRBIQOHM1UcklNaOnTg5VqUsEpvUIrhFU2fSGiV2sFOWj-CfcdWKG6eZeZtGL4rOGB0ymrARKG_A2CFVVMqM7UVHrOBZTPPsdf9vT9lhdOz9G6WpzGV2FP1MzVIbRKfNkrxAjS6eKWiQTDvdw5eGhsw_bXypWzReWxPue-iDHBpP-pWz6-WKzKDrVtohmWPbNYEmM-UQzSazto6Mqw8wCityo5er-AldANsNQh7Cx9ig6p01WvmT6KAOwXi6m4Po-Wo6n9zEd4_Xt5PxXQyc0T4ualExzkBSWVRCKaS8EJDUKVdMiDrLIRWLBU0US0BKmqksEcWiShFyKbKF4IPofJvbOfu-Rt-XrfYKmwYM2rUvk5RzzvI0ZUE62kqVs947rMvO6Rbcd8louSm-3BVf7ooPjoutIxDlm127UJr_V_0LIjmJUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533318551</pqid></control><display><type>article</type><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><source>ACS Publications</source><creator>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</creator><creatorcontrib>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</creatorcontrib><description>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c07761</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-06, Vol.15 (6), p.9482-9494</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</citedby><cites>FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</cites><orcidid>0000-0001-9923-0903 ; 0000-0002-5781-7594 ; 0000-0002-2169-940X ; 0000-0003-0878-3276 ; 0000-0002-4836-6752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c07761$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c07761$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Groven, Benjamin</creatorcontrib><creatorcontrib>Serron, Jill</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Nalin Mehta, Ankit</creatorcontrib><creatorcontrib>Minj, Albert</creatorcontrib><creatorcontrib>Sergeant, Stefanie</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Asselberghs, Inge</creatorcontrib><creatorcontrib>Lin, Dennis</creatorcontrib><creatorcontrib>Brems, Steven</creatorcontrib><creatorcontrib>Huyghebaert, Cedric</creatorcontrib><creatorcontrib>Morin, Pierre</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMlOwzAQjRBIQOHM1UcklNaOnTg5VqUsEpvUIrhFU2fSGiV2sFOWj-CfcdWKG6eZeZtGL4rOGB0ymrARKG_A2CFVVMqM7UVHrOBZTPPsdf9vT9lhdOz9G6WpzGV2FP1MzVIbRKfNkrxAjS6eKWiQTDvdw5eGhsw_bXypWzReWxPue-iDHBpP-pWz6-WKzKDrVtohmWPbNYEmM-UQzSazto6Mqw8wCityo5er-AldANsNQh7Cx9ig6p01WvmT6KAOwXi6m4Po-Wo6n9zEd4_Xt5PxXQyc0T4ualExzkBSWVRCKaS8EJDUKVdMiDrLIRWLBU0US0BKmqksEcWiShFyKbKF4IPofJvbOfu-Rt-XrfYKmwYM2rUvk5RzzvI0ZUE62kqVs947rMvO6Rbcd8louSm-3BVf7ooPjoutIxDlm127UJr_V_0LIjmJUA</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Shi, Yuanyuan</creator><creator>Groven, Benjamin</creator><creator>Serron, Jill</creator><creator>Wu, Xiangyu</creator><creator>Nalin Mehta, Ankit</creator><creator>Minj, Albert</creator><creator>Sergeant, Stefanie</creator><creator>Han, Han</creator><creator>Asselberghs, Inge</creator><creator>Lin, Dennis</creator><creator>Brems, Steven</creator><creator>Huyghebaert, Cedric</creator><creator>Morin, Pierre</creator><creator>Radu, Iuliana</creator><creator>Caymax, Matty</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9923-0903</orcidid><orcidid>https://orcid.org/0000-0002-5781-7594</orcidid><orcidid>https://orcid.org/0000-0002-2169-940X</orcidid><orcidid>https://orcid.org/0000-0003-0878-3276</orcidid><orcidid>https://orcid.org/0000-0002-4836-6752</orcidid></search><sort><creationdate>20210622</creationdate><title>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</title><author>Shi, Yuanyuan ; Groven, Benjamin ; Serron, Jill ; Wu, Xiangyu ; Nalin Mehta, Ankit ; Minj, Albert ; Sergeant, Stefanie ; Han, Han ; Asselberghs, Inge ; Lin, Dennis ; Brems, Steven ; Huyghebaert, Cedric ; Morin, Pierre ; Radu, Iuliana ; Caymax, Matty</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-9f4d131a7079d4cce0394a2f53c144f68a54bb02c12a7706c6249bd5ea8746b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Groven, Benjamin</creatorcontrib><creatorcontrib>Serron, Jill</creatorcontrib><creatorcontrib>Wu, Xiangyu</creatorcontrib><creatorcontrib>Nalin Mehta, Ankit</creatorcontrib><creatorcontrib>Minj, Albert</creatorcontrib><creatorcontrib>Sergeant, Stefanie</creatorcontrib><creatorcontrib>Han, Han</creatorcontrib><creatorcontrib>Asselberghs, Inge</creatorcontrib><creatorcontrib>Lin, Dennis</creatorcontrib><creatorcontrib>Brems, Steven</creatorcontrib><creatorcontrib>Huyghebaert, Cedric</creatorcontrib><creatorcontrib>Morin, Pierre</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Caymax, Matty</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yuanyuan</au><au>Groven, Benjamin</au><au>Serron, Jill</au><au>Wu, Xiangyu</au><au>Nalin Mehta, Ankit</au><au>Minj, Albert</au><au>Sergeant, Stefanie</au><au>Han, Han</au><au>Asselberghs, Inge</au><au>Lin, Dennis</au><au>Brems, Steven</au><au>Huyghebaert, Cedric</au><au>Morin, Pierre</au><au>Radu, Iuliana</au><au>Caymax, Matty</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>9482</spage><epage>9494</epage><pages>9482-9494</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal–organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step heightand thus also surface structurebecome more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c07761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9923-0903</orcidid><orcidid>https://orcid.org/0000-0002-5781-7594</orcidid><orcidid>https://orcid.org/0000-0002-2169-940X</orcidid><orcidid>https://orcid.org/0000-0003-0878-3276</orcidid><orcidid>https://orcid.org/0000-0002-4836-6752</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-06, Vol.15 (6), p.9482-9494 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2533318551 |
source | ACS Publications |
title | Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Wafer-Scale%20Epitaxial%20Two-Dimensional%20Materials%20through%20Sapphire%20Template%20Screening%20for%20Advanced%20High-Performance%20Nanoelectronics&rft.jtitle=ACS%20nano&rft.au=Shi,%20Yuanyuan&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=9482&rft.epage=9494&rft.pages=9482-9494&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c07761&rft_dat=%3Cproquest_cross%3E2533318551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533318551&rft_id=info:pmid/&rfr_iscdi=true |