Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices

Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2021-06, Vol.188 (6), p.200-200, Article 200
Hauptverfasser: Kang, Aeyeon, Ryu, Jiho, Lee, Jisu, Kim, Seunghun, Lee, Cho Yeon, Yun, Wan Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 6
container_start_page 200
container_title Mikrochimica acta (1966)
container_volume 188
creator Kang, Aeyeon
Ryu, Jiho
Lee, Jisu
Kim, Seunghun
Lee, Cho Yeon
Yun, Wan Soo
description Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM). Graphical abstract
doi_str_mv 10.1007/s00604-021-04861-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2533314216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532600238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EglJ4AQYUiYXFcHyJnY6o4iYhscDAZDnOSQnKpbWTSn17XFJAYmA6ks_3_7Y_Qs4YXDEAfR0AFEgKnFGQmWJU75EJk0LRFLTYJxMArqhQmh-R4xA-AJhWXB6SIyFBMgVqQt7mtq5yb_uqaxM3-DXS0iMmWKPrfefesamcrZPVYNu-6kcu3yTx1He0tW2XNEPdVzRECpOFXSYFriuH4YQclLYOeLqbU_J6d_syf6BPz_eP85sn6oROe4o8FUxJzbWbidLJVKWaKXR5VuAMJVhlMz0DqUqWlToTLi10KRwvclXmGTIxJZdj79J3qwFDb5oqOKxr22I3BBP7hWCSMxXRiz_oRzf4Nr5uS3EVfYksUnyk4g9D8Fiapa8a6zeGgdmKN6N4E8WbL_FGx9D5rnrIGyx-It-mIyBGIMRVu0D_e_c_tZ9xPo3R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532600238</pqid></control><display><type>article</type><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</creator><creatorcontrib>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</creatorcontrib><description>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM). Graphical abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-021-04861-7</identifier><identifier>PMID: 34041606</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Alkaline Phosphatase - chemistry ; Aminophenol ; Aminophenols - analysis ; Analytical Chemistry ; Calibration ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Curve fitting ; Dopamine ; Dopamine - blood ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrodes ; Ferricyanides - analysis ; Humans ; Microengineering ; Nanochemistry ; Nanotechnology ; Original Paper ; Potassium ferricyanide</subject><ispartof>Mikrochimica acta (1966), 2021-06, Vol.188 (6), p.200-200, Article 200</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</citedby><cites>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-021-04861-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-021-04861-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34041606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Aeyeon</creatorcontrib><creatorcontrib>Ryu, Jiho</creatorcontrib><creatorcontrib>Lee, Jisu</creatorcontrib><creatorcontrib>Kim, Seunghun</creatorcontrib><creatorcontrib>Lee, Cho Yeon</creatorcontrib><creatorcontrib>Yun, Wan Soo</creatorcontrib><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM). Graphical abstract</description><subject>Alkaline Phosphatase - chemistry</subject><subject>Aminophenol</subject><subject>Aminophenols - analysis</subject><subject>Analytical Chemistry</subject><subject>Calibration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Curve fitting</subject><subject>Dopamine</subject><subject>Dopamine - blood</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Ferricyanides - analysis</subject><subject>Humans</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Potassium ferricyanide</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EglJ4AQYUiYXFcHyJnY6o4iYhscDAZDnOSQnKpbWTSn17XFJAYmA6ks_3_7Y_Qs4YXDEAfR0AFEgKnFGQmWJU75EJk0LRFLTYJxMArqhQmh-R4xA-AJhWXB6SIyFBMgVqQt7mtq5yb_uqaxM3-DXS0iMmWKPrfefesamcrZPVYNu-6kcu3yTx1He0tW2XNEPdVzRECpOFXSYFriuH4YQclLYOeLqbU_J6d_syf6BPz_eP85sn6oROe4o8FUxJzbWbidLJVKWaKXR5VuAMJVhlMz0DqUqWlToTLi10KRwvclXmGTIxJZdj79J3qwFDb5oqOKxr22I3BBP7hWCSMxXRiz_oRzf4Nr5uS3EVfYksUnyk4g9D8Fiapa8a6zeGgdmKN6N4E8WbL_FGx9D5rnrIGyx-It-mIyBGIMRVu0D_e_c_tZ9xPo3R</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kang, Aeyeon</creator><creator>Ryu, Jiho</creator><creator>Lee, Jisu</creator><creator>Kim, Seunghun</creator><creator>Lee, Cho Yeon</creator><creator>Yun, Wan Soo</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210601</creationdate><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><author>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline Phosphatase - chemistry</topic><topic>Aminophenol</topic><topic>Aminophenols - analysis</topic><topic>Analytical Chemistry</topic><topic>Calibration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Curve fitting</topic><topic>Dopamine</topic><topic>Dopamine - blood</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Ferricyanides - analysis</topic><topic>Humans</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Potassium ferricyanide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Aeyeon</creatorcontrib><creatorcontrib>Ryu, Jiho</creatorcontrib><creatorcontrib>Lee, Jisu</creatorcontrib><creatorcontrib>Kim, Seunghun</creatorcontrib><creatorcontrib>Lee, Cho Yeon</creatorcontrib><creatorcontrib>Yun, Wan Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Aeyeon</au><au>Ryu, Jiho</au><au>Lee, Jisu</au><au>Kim, Seunghun</au><au>Lee, Cho Yeon</au><au>Yun, Wan Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>188</volume><issue>6</issue><spage>200</spage><epage>200</epage><pages>200-200</pages><artnum>200</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM). Graphical abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34041606</pmid><doi>10.1007/s00604-021-04861-7</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2021-06, Vol.188 (6), p.200-200, Article 200
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_2533314216
source MEDLINE; SpringerLink Journals
subjects Alkaline Phosphatase - chemistry
Aminophenol
Aminophenols - analysis
Analytical Chemistry
Calibration
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Curve fitting
Dopamine
Dopamine - blood
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrodes
Ferricyanides - analysis
Humans
Microengineering
Nanochemistry
Nanotechnology
Original Paper
Potassium ferricyanide
title Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20curve-free%20electrochemical%20quantitation%20by%20micro-nano%20multi-scale%20gap%20devices&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Kang,%20Aeyeon&rft.date=2021-06-01&rft.volume=188&rft.issue=6&rft.spage=200&rft.epage=200&rft.pages=200-200&rft.artnum=200&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-021-04861-7&rft_dat=%3Cproquest_cross%3E2532600238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532600238&rft_id=info:pmid/34041606&rfr_iscdi=true