Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices
Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2021-06, Vol.188 (6), p.200-200, Article 200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 6 |
container_start_page | 200 |
container_title | Mikrochimica acta (1966) |
container_volume | 188 |
creator | Kang, Aeyeon Ryu, Jiho Lee, Jisu Kim, Seunghun Lee, Cho Yeon Yun, Wan Soo |
description | Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM).
Graphical abstract |
doi_str_mv | 10.1007/s00604-021-04861-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2533314216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532600238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EglJ4AQYUiYXFcHyJnY6o4iYhscDAZDnOSQnKpbWTSn17XFJAYmA6ks_3_7Y_Qs4YXDEAfR0AFEgKnFGQmWJU75EJk0LRFLTYJxMArqhQmh-R4xA-AJhWXB6SIyFBMgVqQt7mtq5yb_uqaxM3-DXS0iMmWKPrfefesamcrZPVYNu-6kcu3yTx1He0tW2XNEPdVzRECpOFXSYFriuH4YQclLYOeLqbU_J6d_syf6BPz_eP85sn6oROe4o8FUxJzbWbidLJVKWaKXR5VuAMJVhlMz0DqUqWlToTLi10KRwvclXmGTIxJZdj79J3qwFDb5oqOKxr22I3BBP7hWCSMxXRiz_oRzf4Nr5uS3EVfYksUnyk4g9D8Fiapa8a6zeGgdmKN6N4E8WbL_FGx9D5rnrIGyx-It-mIyBGIMRVu0D_e_c_tZ9xPo3R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532600238</pqid></control><display><type>article</type><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</creator><creatorcontrib>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</creatorcontrib><description>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM).
Graphical abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-021-04861-7</identifier><identifier>PMID: 34041606</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Alkaline Phosphatase - chemistry ; Aminophenol ; Aminophenols - analysis ; Analytical Chemistry ; Calibration ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Curve fitting ; Dopamine ; Dopamine - blood ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrodes ; Ferricyanides - analysis ; Humans ; Microengineering ; Nanochemistry ; Nanotechnology ; Original Paper ; Potassium ferricyanide</subject><ispartof>Mikrochimica acta (1966), 2021-06, Vol.188 (6), p.200-200, Article 200</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</citedby><cites>FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-021-04861-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-021-04861-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34041606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Aeyeon</creatorcontrib><creatorcontrib>Ryu, Jiho</creatorcontrib><creatorcontrib>Lee, Jisu</creatorcontrib><creatorcontrib>Kim, Seunghun</creatorcontrib><creatorcontrib>Lee, Cho Yeon</creatorcontrib><creatorcontrib>Yun, Wan Soo</creatorcontrib><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM).
Graphical abstract</description><subject>Alkaline Phosphatase - chemistry</subject><subject>Aminophenol</subject><subject>Aminophenols - analysis</subject><subject>Analytical Chemistry</subject><subject>Calibration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Curve fitting</subject><subject>Dopamine</subject><subject>Dopamine - blood</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Ferricyanides - analysis</subject><subject>Humans</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Potassium ferricyanide</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAUhi0EglJ4AQYUiYXFcHyJnY6o4iYhscDAZDnOSQnKpbWTSn17XFJAYmA6ks_3_7Y_Qs4YXDEAfR0AFEgKnFGQmWJU75EJk0LRFLTYJxMArqhQmh-R4xA-AJhWXB6SIyFBMgVqQt7mtq5yb_uqaxM3-DXS0iMmWKPrfefesamcrZPVYNu-6kcu3yTx1He0tW2XNEPdVzRECpOFXSYFriuH4YQclLYOeLqbU_J6d_syf6BPz_eP85sn6oROe4o8FUxJzbWbidLJVKWaKXR5VuAMJVhlMz0DqUqWlToTLi10KRwvclXmGTIxJZdj79J3qwFDb5oqOKxr22I3BBP7hWCSMxXRiz_oRzf4Nr5uS3EVfYksUnyk4g9D8Fiapa8a6zeGgdmKN6N4E8WbL_FGx9D5rnrIGyx-It-mIyBGIMRVu0D_e_c_tZ9xPo3R</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kang, Aeyeon</creator><creator>Ryu, Jiho</creator><creator>Lee, Jisu</creator><creator>Kim, Seunghun</creator><creator>Lee, Cho Yeon</creator><creator>Yun, Wan Soo</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20210601</creationdate><title>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</title><author>Kang, Aeyeon ; Ryu, Jiho ; Lee, Jisu ; Kim, Seunghun ; Lee, Cho Yeon ; Yun, Wan Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e253164727c93fc4565716ecb8de9e40a6a879046f18f783c5d7f3c2db6fb8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline Phosphatase - chemistry</topic><topic>Aminophenol</topic><topic>Aminophenols - analysis</topic><topic>Analytical Chemistry</topic><topic>Calibration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Curve fitting</topic><topic>Dopamine</topic><topic>Dopamine - blood</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Ferricyanides - analysis</topic><topic>Humans</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Potassium ferricyanide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Aeyeon</creatorcontrib><creatorcontrib>Ryu, Jiho</creatorcontrib><creatorcontrib>Lee, Jisu</creatorcontrib><creatorcontrib>Kim, Seunghun</creatorcontrib><creatorcontrib>Lee, Cho Yeon</creatorcontrib><creatorcontrib>Yun, Wan Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Aeyeon</au><au>Ryu, Jiho</au><au>Lee, Jisu</au><au>Kim, Seunghun</au><au>Lee, Cho Yeon</au><au>Yun, Wan Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>188</volume><issue>6</issue><spage>200</spage><epage>200</epage><pages>200-200</pages><artnum>200</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>Quantitation without relying on the calibration curve has long been an issue of overcoming analytical problems accompanied with the inherent limitations of the calibration curve fitting errors. Here, we report on a calibration curve-free method for electrochemical quantitation based on a multi-scale gap device (MGD). The MGD is an integrated device having a series of interdigitated electrodes (IDE) with micro-to-nano gap distances. The device shows a gap-dependent redox current of the analyte when subjected to the electrochemical cycling between the two facing electrodes of its componential IDEs. Based on the fact that the current increases as the gap distance decreases, the analyte concentration could be directly estimated: the rate of increase in the current was directly proportional to the analyte concentration. The calibration curve was not necessary for the quantitation. The accuracy of this MGD approach was better than that of an IDE collection of the same gap distance, which was deteriorated at the larger gap distances particularly. The MGD-based quantitation of dopamine, potassium ferricyanide, and aminophenol was demonstrated in a relatively broad range of concentrations (100 nM–5 mM).
Graphical abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34041606</pmid><doi>10.1007/s00604-021-04861-7</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2021-06, Vol.188 (6), p.200-200, Article 200 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_miscellaneous_2533314216 |
source | MEDLINE; SpringerLink Journals |
subjects | Alkaline Phosphatase - chemistry Aminophenol Aminophenols - analysis Analytical Chemistry Calibration Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Curve fitting Dopamine Dopamine - blood Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Electrodes Ferricyanides - analysis Humans Microengineering Nanochemistry Nanotechnology Original Paper Potassium ferricyanide |
title | Calibration curve-free electrochemical quantitation by micro-nano multi-scale gap devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20curve-free%20electrochemical%20quantitation%20by%20micro-nano%20multi-scale%20gap%20devices&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Kang,%20Aeyeon&rft.date=2021-06-01&rft.volume=188&rft.issue=6&rft.spage=200&rft.epage=200&rft.pages=200-200&rft.artnum=200&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-021-04861-7&rft_dat=%3Cproquest_cross%3E2532600238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532600238&rft_id=info:pmid/34041606&rfr_iscdi=true |