Perovskite-type superlattices from lead halide perovskite nanocubes

Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra 1 – 3 , their coherent long-range energy transport, their conceptual similarity to natural light-harvesti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-05, Vol.593 (7860), p.535-542
Hauptverfasser: Cherniukh, Ihor, Rainò, Gabriele, Stöferle, Thilo, Burian, Max, Travesset, Alex, Naumenko, Denys, Amenitsch, Heinz, Erni, Rolf, Mahrt, Rainer F., Bodnarchuk, Maryna I., Kovalenko, Maksym V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 7860
container_start_page 535
container_title Nature (London)
container_volume 593
creator Cherniukh, Ihor
Rainò, Gabriele
Stöferle, Thilo
Burian, Max
Travesset, Alex
Naumenko, Denys
Amenitsch, Heinz
Erni, Rolf
Mahrt, Rainer F.
Bodnarchuk, Maryna I.
Kovalenko, Maksym V.
description Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra 1 – 3 , their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes 4 , 5 , and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices 6 . Caesium lead halide perovskite nanocrystals 7 – 9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons 10 , slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines 11 , 12 . So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals 13 . Here we present perovskite-type (ABO 3 ) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr 3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe 3 O 4 or NaGdF 4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO 3 superlattices, as well as the binary NaCl and AlB 2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr 3 nanocubes. They also exhibit superfluorescence—a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures. Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.
doi_str_mv 10.1038/s41586-021-03492-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2533312656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663246849</galeid><sourcerecordid>A663246849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-6d80285e59b1f475dc7301d4223044810e00d2c2834717121d69f5bbe081f4303</originalsourceid><addsrcrecordid>eNp90ltrFDEUB_AgFrtWv4APMtgXpaSeXCf7uCxqC6WKVnwMmcyZdercmsyI_fZm3d5WVslDIPmdwyH5E_KCwTEDYd5GyZTRFDijIOScU_WIzJjMNZXa5I_JDIAbCkboffI0xksAUCyXT8i-kCCBg5mR5ScM_c_4ox6RjtcDZnEaMDRuHGuPMatC32YNujL77pq6xGy441nnut5PBcZnZK9yTcTnN_sB-fr-3cXyhJ59_HC6XJxRr5UZqS5NmkehmheskrkqfS6AlZJzAVIaBghQcs-NkDnLGWelnleqKBBM8gLEAXm96TuE_mrCONq2jh6bxnXYT9FyJYRgXCud6OFf9LKfQpemWyulctAc7tXKNWjrrurH4Py6qV1oLXh6RjlPiu5QK-wwuKbvsKrT8ZZ_tcP7ob6yD9HxDpRWiW3td3Z9s1WQzIi_xpWbYrSnXz5v26N_28XFt-X5tuYb7UMfY8DKDqFuXbi2DOw6aHYTNJuCZv8EzapU9PLmgaeixfKu5DZZCYgNiOmqW2G4_4H_tP0NORnWyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535570620</pqid></control><display><type>article</type><title>Perovskite-type superlattices from lead halide perovskite nanocubes</title><source>SpringerLink Journals</source><source>Nature</source><creator>Cherniukh, Ihor ; Rainò, Gabriele ; Stöferle, Thilo ; Burian, Max ; Travesset, Alex ; Naumenko, Denys ; Amenitsch, Heinz ; Erni, Rolf ; Mahrt, Rainer F. ; Bodnarchuk, Maryna I. ; Kovalenko, Maksym V.</creator><creatorcontrib>Cherniukh, Ihor ; Rainò, Gabriele ; Stöferle, Thilo ; Burian, Max ; Travesset, Alex ; Naumenko, Denys ; Amenitsch, Heinz ; Erni, Rolf ; Mahrt, Rainer F. ; Bodnarchuk, Maryna I. ; Kovalenko, Maksym V.</creatorcontrib><description>Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra 1 – 3 , their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes 4 , 5 , and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices 6 . Caesium lead halide perovskite nanocrystals 7 – 9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons 10 , slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines 11 , 12 . So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals 13 . Here we present perovskite-type (ABO 3 ) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr 3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe 3 O 4 or NaGdF 4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO 3 superlattices, as well as the binary NaCl and AlB 2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr 3 nanocubes. They also exhibit superfluorescence—a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures. Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03492-5</identifier><identifier>PMID: 34040208</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/966 ; 639/925/357/1017 ; 639/925/357/354 ; Aggregates ; Cesium ; Chemical properties ; Crystals ; Cubic lattice ; Emission ; Emissions ; Energy transport ; Halides ; Humanities and Social Sciences ; Iron oxides ; Lattice sites ; Lead compounds ; Ligands ; Light sources ; Materials ; Mechanical properties ; Metal halides ; Microscopy ; multidisciplinary ; Nanocrystals ; Nanoparticles ; Natural lighting ; Perovskite ; Perovskites ; Photons ; Photovoltaic cells ; Photovoltaics ; Production processes ; Quantum dots ; Science ; Science (multidisciplinary) ; Sodium chloride ; Spheres ; Superfluorescence ; Superlattices ; Tomography</subject><ispartof>Nature (London), 2021-05, Vol.593 (7860), p.535-542</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 27, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-6d80285e59b1f475dc7301d4223044810e00d2c2834717121d69f5bbe081f4303</citedby><cites>FETCH-LOGICAL-c658t-6d80285e59b1f475dc7301d4223044810e00d2c2834717121d69f5bbe081f4303</cites><orcidid>0000-0002-2395-4937 ; 0000-0003-0612-7195 ; 0000-0002-9772-1490 ; 0000-0001-7155-5095 ; 0000-0003-2391-5943 ; 0000-0001-7030-9570 ; 0000-0001-6597-3266 ; 0000-0001-6728-6347 ; 0000-0002-6396-8938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03492-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03492-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34040208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherniukh, Ihor</creatorcontrib><creatorcontrib>Rainò, Gabriele</creatorcontrib><creatorcontrib>Stöferle, Thilo</creatorcontrib><creatorcontrib>Burian, Max</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Naumenko, Denys</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Erni, Rolf</creatorcontrib><creatorcontrib>Mahrt, Rainer F.</creatorcontrib><creatorcontrib>Bodnarchuk, Maryna I.</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><title>Perovskite-type superlattices from lead halide perovskite nanocubes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra 1 – 3 , their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes 4 , 5 , and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices 6 . Caesium lead halide perovskite nanocrystals 7 – 9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons 10 , slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines 11 , 12 . So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals 13 . Here we present perovskite-type (ABO 3 ) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr 3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe 3 O 4 or NaGdF 4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO 3 superlattices, as well as the binary NaCl and AlB 2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr 3 nanocubes. They also exhibit superfluorescence—a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures. Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.</description><subject>639/301/923/966</subject><subject>639/925/357/1017</subject><subject>639/925/357/354</subject><subject>Aggregates</subject><subject>Cesium</subject><subject>Chemical properties</subject><subject>Crystals</subject><subject>Cubic lattice</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy transport</subject><subject>Halides</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>Lattice sites</subject><subject>Lead compounds</subject><subject>Ligands</subject><subject>Light sources</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal halides</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Natural lighting</subject><subject>Perovskite</subject><subject>Perovskites</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Production processes</subject><subject>Quantum dots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium chloride</subject><subject>Spheres</subject><subject>Superfluorescence</subject><subject>Superlattices</subject><subject>Tomography</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90ltrFDEUB_AgFrtWv4APMtgXpaSeXCf7uCxqC6WKVnwMmcyZdercmsyI_fZm3d5WVslDIPmdwyH5E_KCwTEDYd5GyZTRFDijIOScU_WIzJjMNZXa5I_JDIAbCkboffI0xksAUCyXT8i-kCCBg5mR5ScM_c_4ox6RjtcDZnEaMDRuHGuPMatC32YNujL77pq6xGy441nnut5PBcZnZK9yTcTnN_sB-fr-3cXyhJ59_HC6XJxRr5UZqS5NmkehmheskrkqfS6AlZJzAVIaBghQcs-NkDnLGWelnleqKBBM8gLEAXm96TuE_mrCONq2jh6bxnXYT9FyJYRgXCud6OFf9LKfQpemWyulctAc7tXKNWjrrurH4Py6qV1oLXh6RjlPiu5QK-wwuKbvsKrT8ZZ_tcP7ob6yD9HxDpRWiW3td3Z9s1WQzIi_xpWbYrSnXz5v26N_28XFt-X5tuYb7UMfY8DKDqFuXbi2DOw6aHYTNJuCZv8EzapU9PLmgaeixfKu5DZZCYgNiOmqW2G4_4H_tP0NORnWyw</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Cherniukh, Ihor</creator><creator>Rainò, Gabriele</creator><creator>Stöferle, Thilo</creator><creator>Burian, Max</creator><creator>Travesset, Alex</creator><creator>Naumenko, Denys</creator><creator>Amenitsch, Heinz</creator><creator>Erni, Rolf</creator><creator>Mahrt, Rainer F.</creator><creator>Bodnarchuk, Maryna I.</creator><creator>Kovalenko, Maksym V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2395-4937</orcidid><orcidid>https://orcid.org/0000-0003-0612-7195</orcidid><orcidid>https://orcid.org/0000-0002-9772-1490</orcidid><orcidid>https://orcid.org/0000-0001-7155-5095</orcidid><orcidid>https://orcid.org/0000-0003-2391-5943</orcidid><orcidid>https://orcid.org/0000-0001-7030-9570</orcidid><orcidid>https://orcid.org/0000-0001-6597-3266</orcidid><orcidid>https://orcid.org/0000-0001-6728-6347</orcidid><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid></search><sort><creationdate>20210527</creationdate><title>Perovskite-type superlattices from lead halide perovskite nanocubes</title><author>Cherniukh, Ihor ; Rainò, Gabriele ; Stöferle, Thilo ; Burian, Max ; Travesset, Alex ; Naumenko, Denys ; Amenitsch, Heinz ; Erni, Rolf ; Mahrt, Rainer F. ; Bodnarchuk, Maryna I. ; Kovalenko, Maksym V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-6d80285e59b1f475dc7301d4223044810e00d2c2834717121d69f5bbe081f4303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/923/966</topic><topic>639/925/357/1017</topic><topic>639/925/357/354</topic><topic>Aggregates</topic><topic>Cesium</topic><topic>Chemical properties</topic><topic>Crystals</topic><topic>Cubic lattice</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy transport</topic><topic>Halides</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>Lattice sites</topic><topic>Lead compounds</topic><topic>Ligands</topic><topic>Light sources</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal halides</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Natural lighting</topic><topic>Perovskite</topic><topic>Perovskites</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Production processes</topic><topic>Quantum dots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium chloride</topic><topic>Spheres</topic><topic>Superfluorescence</topic><topic>Superlattices</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherniukh, Ihor</creatorcontrib><creatorcontrib>Rainò, Gabriele</creatorcontrib><creatorcontrib>Stöferle, Thilo</creatorcontrib><creatorcontrib>Burian, Max</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Naumenko, Denys</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Erni, Rolf</creatorcontrib><creatorcontrib>Mahrt, Rainer F.</creatorcontrib><creatorcontrib>Bodnarchuk, Maryna I.</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherniukh, Ihor</au><au>Rainò, Gabriele</au><au>Stöferle, Thilo</au><au>Burian, Max</au><au>Travesset, Alex</au><au>Naumenko, Denys</au><au>Amenitsch, Heinz</au><au>Erni, Rolf</au><au>Mahrt, Rainer F.</au><au>Bodnarchuk, Maryna I.</au><au>Kovalenko, Maksym V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perovskite-type superlattices from lead halide perovskite nanocubes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-05-27</date><risdate>2021</risdate><volume>593</volume><issue>7860</issue><spage>535</spage><epage>542</epage><pages>535-542</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra 1 – 3 , their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes 4 , 5 , and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices 6 . Caesium lead halide perovskite nanocrystals 7 – 9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons 10 , slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines 11 , 12 . So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals 13 . Here we present perovskite-type (ABO 3 ) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr 3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe 3 O 4 or NaGdF 4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO 3 superlattices, as well as the binary NaCl and AlB 2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr 3 nanocubes. They also exhibit superfluorescence—a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures. Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34040208</pmid><doi>10.1038/s41586-021-03492-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2395-4937</orcidid><orcidid>https://orcid.org/0000-0003-0612-7195</orcidid><orcidid>https://orcid.org/0000-0002-9772-1490</orcidid><orcidid>https://orcid.org/0000-0001-7155-5095</orcidid><orcidid>https://orcid.org/0000-0003-2391-5943</orcidid><orcidid>https://orcid.org/0000-0001-7030-9570</orcidid><orcidid>https://orcid.org/0000-0001-6597-3266</orcidid><orcidid>https://orcid.org/0000-0001-6728-6347</orcidid><orcidid>https://orcid.org/0000-0002-6396-8938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-05, Vol.593 (7860), p.535-542
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2533312656
source SpringerLink Journals; Nature
subjects 639/301/923/966
639/925/357/1017
639/925/357/354
Aggregates
Cesium
Chemical properties
Crystals
Cubic lattice
Emission
Emissions
Energy transport
Halides
Humanities and Social Sciences
Iron oxides
Lattice sites
Lead compounds
Ligands
Light sources
Materials
Mechanical properties
Metal halides
Microscopy
multidisciplinary
Nanocrystals
Nanoparticles
Natural lighting
Perovskite
Perovskites
Photons
Photovoltaic cells
Photovoltaics
Production processes
Quantum dots
Science
Science (multidisciplinary)
Sodium chloride
Spheres
Superfluorescence
Superlattices
Tomography
title Perovskite-type superlattices from lead halide perovskite nanocubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perovskite-type%20superlattices%20from%20lead%20halide%20perovskite%20nanocubes&rft.jtitle=Nature%20(London)&rft.au=Cherniukh,%20Ihor&rft.date=2021-05-27&rft.volume=593&rft.issue=7860&rft.spage=535&rft.epage=542&rft.pages=535-542&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03492-5&rft_dat=%3Cgale_proqu%3EA663246849%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535570620&rft_id=info:pmid/34040208&rft_galeid=A663246849&rfr_iscdi=true