Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction

Graph theory analysis using electroencephalogram (EEG) signals is currently an advanced technique for seizure prediction. Recent deep learning approaches, which fail to fully explore both the characterizations in EEGs themselves and correlations among different electrodes simultaneously, generally n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-11, Vol.52 (11), p.12189-12204
Hauptverfasser: Li, Yang, Liu, Yu, Guo, Yu-Zhu, Liao, Xiao-Feng, Hu, Bin, Yu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graph theory analysis using electroencephalogram (EEG) signals is currently an advanced technique for seizure prediction. Recent deep learning approaches, which fail to fully explore both the characterizations in EEGs themselves and correlations among different electrodes simultaneously, generally neglect the spatial or temporal dependencies in an epileptic brain and, thus, produce suboptimal seizure prediction performance consequently. To tackle this issue, in this article, a patient-specific EEG seizure predictor is proposed by using a novel spatio-temporal-spectral hierarchical graph convolutional network with an active preictal interval learning scheme (STS-HGCN-AL). Specifically, since the epileptic activities in different brain regions may be of different frequencies, the proposed STS-HGCN-AL framework first infers a hierarchical graph to concurrently characterize an epileptic cortex under different rhythms, whose temporal dependencies and spatial couplings are extracted by a spectral-temporal convolutional neural network and a variant self-gating mechanism, respectively. Critical intrarhythm spatiotemporal properties are then captured and integrated jointly and further mapped to the final recognition results by using a hierarchical graph convolutional network. Particularly, since the preictal transition may be diverse from seconds to hours prior to a seizure onset among different patients, our STS-HGCN-AL scheme estimates an optimal preictal interval patient dependently via a semisupervised active learning strategy, which further enhances the robustness of the proposed patient-specific EEG seizure predictor. Competitive experimental results validate the efficacy of the proposed method in extracting critical preictal biomarkers, indicating its promising abilities in automatic seizure prediction.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2021.3071860