A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces
Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1989-09, Vol.11 (9), p.1005-1008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 9 |
container_start_page | 1005 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 11 |
creator | Schwartz, E.L. Shaw, A. Wolfson, E. |
description | Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.< > |
doi_str_mv | 10.1109/34.35506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25319247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>35506</ieee_id><sourcerecordid>25319247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</originalsourceid><addsrcrecordid>eNqF0L9PxCAYxnFiNPE8TVzdGIy6VKHQAm7G-Cu5xEXnhsKLVimc0BrPv97qGVcnBj755s2D0D4lp5QSdcb4KasqUm-gGVVMFaxiahPNCK3LQspSbqOdnF8IobwibIbsBQ5jD6kz2uMc_Th0MeAh4uEZ8BMESNp3n2Bxr5e9foV0nPEyxdZDf46d18MAoQtPOMRgYniHD7yMfvUMNn33xuS0gbyLtpz2GfZ-3zl6vL56uLwtFvc3d5cXi8IwxodCOieAcEvAipYqCooRWdYVJU5w6YxURrTW6VZZ44xyLTPc2tpJXTJpBGdzdLTuThe-jZCHpu-yAe91gDjmppSc1YLW_8OKUVVyMcGTNTQp5pzANcvU9TqtGkqa770bxpufvSd6-NvUeRrTJR1Ml_-8YJUQlZrYwZp1APD3u058AamdiW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25319247</pqid></control><display><type>article</type><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</creator><creatorcontrib>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</creatorcontrib><description>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.35506</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Automation ; Brain modeling ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Earth ; Exact sciences and technology ; Geophysical measurements ; Geophysics computing ; Pattern recognition. Digital image processing. Computational geometry ; Robots ; Surface fitting</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-09, Vol.11 (9), p.1005-1008</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</citedby><cites>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/35506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/35506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7357759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwartz, E.L.</creatorcontrib><creatorcontrib>Shaw, A.</creatorcontrib><creatorcontrib>Wolfson, E.</creatorcontrib><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.< ></description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Brain modeling</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Earth</subject><subject>Exact sciences and technology</subject><subject>Geophysical measurements</subject><subject>Geophysics computing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robots</subject><subject>Surface fitting</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0L9PxCAYxnFiNPE8TVzdGIy6VKHQAm7G-Cu5xEXnhsKLVimc0BrPv97qGVcnBj755s2D0D4lp5QSdcb4KasqUm-gGVVMFaxiahPNCK3LQspSbqOdnF8IobwibIbsBQ5jD6kz2uMc_Th0MeAh4uEZ8BMESNp3n2Bxr5e9foV0nPEyxdZDf46d18MAoQtPOMRgYniHD7yMfvUMNn33xuS0gbyLtpz2GfZ-3zl6vL56uLwtFvc3d5cXi8IwxodCOieAcEvAipYqCooRWdYVJU5w6YxURrTW6VZZ44xyLTPc2tpJXTJpBGdzdLTuThe-jZCHpu-yAe91gDjmppSc1YLW_8OKUVVyMcGTNTQp5pzANcvU9TqtGkqa770bxpufvSd6-NvUeRrTJR1Ml_-8YJUQlZrYwZp1APD3u058AamdiW0</recordid><startdate>19890901</startdate><enddate>19890901</enddate><creator>Schwartz, E.L.</creator><creator>Shaw, A.</creator><creator>Wolfson, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890901</creationdate><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><author>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Brain modeling</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Earth</topic><topic>Exact sciences and technology</topic><topic>Geophysical measurements</topic><topic>Geophysics computing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robots</topic><topic>Surface fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, E.L.</creatorcontrib><creatorcontrib>Shaw, A.</creatorcontrib><creatorcontrib>Wolfson, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwartz, E.L.</au><au>Shaw, A.</au><au>Wolfson, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-09-01</date><risdate>1989</risdate><volume>11</volume><issue>9</issue><spage>1005</spage><epage>1008</epage><pages>1005-1008</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.35506</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1989-09, Vol.11 (9), p.1005-1008 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_25319247 |
source | IEEE Electronic Library (IEL) |
subjects | Application software Applied sciences Artificial intelligence Automation Brain modeling Computational geometry Computer science Computer science control theory systems Earth Exact sciences and technology Geophysical measurements Geophysics computing Pattern recognition. Digital image processing. Computational geometry Robots Surface fitting |
title | A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20to%20the%20generalized%20mapmaker's%20problem:%20flattening%20nonconvex%20polyhedral%20surfaces&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Schwartz,%20E.L.&rft.date=1989-09-01&rft.volume=11&rft.issue=9&rft.spage=1005&rft.epage=1008&rft.pages=1005-1008&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.35506&rft_dat=%3Cproquest_RIE%3E25319247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25319247&rft_id=info:pmid/&rft_ieee_id=35506&rfr_iscdi=true |