A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces

Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1989-09, Vol.11 (9), p.1005-1008
Hauptverfasser: Schwartz, E.L., Shaw, A., Wolfson, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 9
container_start_page 1005
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 11
creator Schwartz, E.L.
Shaw, A.
Wolfson, E.
description Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.< >
doi_str_mv 10.1109/34.35506
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25319247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>35506</ieee_id><sourcerecordid>25319247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</originalsourceid><addsrcrecordid>eNqF0L9PxCAYxnFiNPE8TVzdGIy6VKHQAm7G-Cu5xEXnhsKLVimc0BrPv97qGVcnBj755s2D0D4lp5QSdcb4KasqUm-gGVVMFaxiahPNCK3LQspSbqOdnF8IobwibIbsBQ5jD6kz2uMc_Th0MeAh4uEZ8BMESNp3n2Bxr5e9foV0nPEyxdZDf46d18MAoQtPOMRgYniHD7yMfvUMNn33xuS0gbyLtpz2GfZ-3zl6vL56uLwtFvc3d5cXi8IwxodCOieAcEvAipYqCooRWdYVJU5w6YxURrTW6VZZ44xyLTPc2tpJXTJpBGdzdLTuThe-jZCHpu-yAe91gDjmppSc1YLW_8OKUVVyMcGTNTQp5pzANcvU9TqtGkqa770bxpufvSd6-NvUeRrTJR1Ml_-8YJUQlZrYwZp1APD3u058AamdiW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25319247</pqid></control><display><type>article</type><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</creator><creatorcontrib>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</creatorcontrib><description>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.35506</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Automation ; Brain modeling ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Earth ; Exact sciences and technology ; Geophysical measurements ; Geophysics computing ; Pattern recognition. Digital image processing. Computational geometry ; Robots ; Surface fitting</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-09, Vol.11 (9), p.1005-1008</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</citedby><cites>FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/35506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/35506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7357759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwartz, E.L.</creatorcontrib><creatorcontrib>Shaw, A.</creatorcontrib><creatorcontrib>Wolfson, E.</creatorcontrib><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.&lt; &gt;</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Brain modeling</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Earth</subject><subject>Exact sciences and technology</subject><subject>Geophysical measurements</subject><subject>Geophysics computing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robots</subject><subject>Surface fitting</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0L9PxCAYxnFiNPE8TVzdGIy6VKHQAm7G-Cu5xEXnhsKLVimc0BrPv97qGVcnBj755s2D0D4lp5QSdcb4KasqUm-gGVVMFaxiahPNCK3LQspSbqOdnF8IobwibIbsBQ5jD6kz2uMc_Th0MeAh4uEZ8BMESNp3n2Bxr5e9foV0nPEyxdZDf46d18MAoQtPOMRgYniHD7yMfvUMNn33xuS0gbyLtpz2GfZ-3zl6vL56uLwtFvc3d5cXi8IwxodCOieAcEvAipYqCooRWdYVJU5w6YxURrTW6VZZ44xyLTPc2tpJXTJpBGdzdLTuThe-jZCHpu-yAe91gDjmppSc1YLW_8OKUVVyMcGTNTQp5pzANcvU9TqtGkqa770bxpufvSd6-NvUeRrTJR1Ml_-8YJUQlZrYwZp1APD3u058AamdiW0</recordid><startdate>19890901</startdate><enddate>19890901</enddate><creator>Schwartz, E.L.</creator><creator>Shaw, A.</creator><creator>Wolfson, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890901</creationdate><title>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</title><author>Schwartz, E.L. ; Shaw, A. ; Wolfson, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8ff7e04d0ed7b191e930826510f748fc89c7bdfab9dcfc9fb3c4dd6f8a238c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Brain modeling</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Earth</topic><topic>Exact sciences and technology</topic><topic>Geophysical measurements</topic><topic>Geophysics computing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robots</topic><topic>Surface fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, E.L.</creatorcontrib><creatorcontrib>Shaw, A.</creatorcontrib><creatorcontrib>Wolfson, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwartz, E.L.</au><au>Shaw, A.</au><au>Wolfson, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-09-01</date><risdate>1989</risdate><volume>11</volume><issue>9</issue><spage>1005</spage><epage>1008</epage><pages>1005-1008</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Methods are described to unfold and flatten the curved, convoluted surfaces of the brain in order to study the functional architectures and neural maps embedded in them. In order to do this, it is necessary to solve the general mapmaker's problem for representing curved surfaces by planar models. This algorithm has applications in areas other than computer-aided neuroanatomy, such as robotics motion planning and geophysics. The algorithm maximizes the goodness of fit distances in these surfaces to distances in a planar configuration of points. It is illustrated with a flattening of monkey visual cortex, which is an extremely complex folded surface. Distance errors in the range of several percent are found, with isolated regions of larger error, for the class of cortical surfaces studied so far.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.35506</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1989-09, Vol.11 (9), p.1005-1008
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_25319247
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Artificial intelligence
Automation
Brain modeling
Computational geometry
Computer science
Computer science
control theory
systems
Earth
Exact sciences and technology
Geophysical measurements
Geophysics computing
Pattern recognition. Digital image processing. Computational geometry
Robots
Surface fitting
title A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20to%20the%20generalized%20mapmaker's%20problem:%20flattening%20nonconvex%20polyhedral%20surfaces&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Schwartz,%20E.L.&rft.date=1989-09-01&rft.volume=11&rft.issue=9&rft.spage=1005&rft.epage=1008&rft.pages=1005-1008&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.35506&rft_dat=%3Cproquest_RIE%3E25319247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25319247&rft_id=info:pmid/&rft_ieee_id=35506&rfr_iscdi=true