An adaptive controller which provides Lyapunov stability

An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1989-06, Vol.34 (6), p.599-609
Hauptverfasser: Miller, D.E., Davison, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 6
container_start_page 599
container_title IEEE transactions on automatic control
container_volume 34
creator Miller, D.E.
Davison, E.J.
description An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.< >
doi_str_mv 10.1109/9.24228
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25317932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>24228</ieee_id><sourcerecordid>25317932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqUgZrYMCKaU2M659lhVfEmVWGC27IujGqVJsNOg_ntSUnWF6XS6R8-9egm5ptmM0kw9qBnLGZMnZEIBZMqA8VMyyTIqU8WkOCcXMX4Oq8hzOiFyUSemMG3ne5dgU3ehqSoXku-1x3XShqb3hYvJamfabd30SeyM9ZXvdpfkrDRVdFeHOSUfT4_vy5d09fb8ulysUuSCdykw45CjLYSgVBnJZMlskSFIACFRWlOihIIxNUdOQeWGWhSQAy2UtBb5lNyN3iHL19bFTm98RFdVpnbNNmomFWRS8X-AOQMK-d8gcDpXnA3g_QhiaGIMrtRt8BsTdppmet-1Vvq364G8PShNRFOVwdTo4xGf8yGh2H--GTHvnDteR8UPkWSExw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25317932</pqid></control><display><type>article</type><title>An adaptive controller which provides Lyapunov stability</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, D.E. ; Davison, E.J.</creator><creatorcontrib>Miller, D.E. ; Davison, E.J.</creatorcontrib><description>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.24228</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Councils ; Differential equations ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Frequency ; Lyapunov method ; Programmable control ; Stability ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1989-06, Vol.34 (6), p.599-609</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</citedby><cites>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/24228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/24228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7308964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, D.E.</creatorcontrib><creatorcontrib>Davison, E.J.</creatorcontrib><title>An adaptive controller which provides Lyapunov stability</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.&lt; &gt;</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Councils</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Lyapunov method</subject><subject>Programmable control</subject><subject>Stability</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqUgZrYMCKaU2M659lhVfEmVWGC27IujGqVJsNOg_ntSUnWF6XS6R8-9egm5ptmM0kw9qBnLGZMnZEIBZMqA8VMyyTIqU8WkOCcXMX4Oq8hzOiFyUSemMG3ne5dgU3ehqSoXku-1x3XShqb3hYvJamfabd30SeyM9ZXvdpfkrDRVdFeHOSUfT4_vy5d09fb8ulysUuSCdykw45CjLYSgVBnJZMlskSFIACFRWlOihIIxNUdOQeWGWhSQAy2UtBb5lNyN3iHL19bFTm98RFdVpnbNNmomFWRS8X-AOQMK-d8gcDpXnA3g_QhiaGIMrtRt8BsTdppmet-1Vvq364G8PShNRFOVwdTo4xGf8yGh2H--GTHvnDteR8UPkWSExw</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>Miller, D.E.</creator><creator>Davison, E.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890601</creationdate><title>An adaptive controller which provides Lyapunov stability</title><author>Miller, D.E. ; Davison, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Councils</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Lyapunov method</topic><topic>Programmable control</topic><topic>Stability</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, D.E.</creatorcontrib><creatorcontrib>Davison, E.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, D.E.</au><au>Davison, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive controller which provides Lyapunov stability</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1989-06-01</date><risdate>1989</risdate><volume>34</volume><issue>6</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.24228</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1989-06, Vol.34 (6), p.599-609
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_25317932
source IEEE Electronic Library (IEL)
subjects Adaptative systems
Adaptive control
Applied sciences
Computer science
control theory
systems
Control systems
Control theory. Systems
Councils
Differential equations
Eigenvalues and eigenfunctions
Exact sciences and technology
Frequency
Lyapunov method
Programmable control
Stability
Upper bound
title An adaptive controller which provides Lyapunov stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20controller%20which%20provides%20Lyapunov%20stability&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Miller,%20D.E.&rft.date=1989-06-01&rft.volume=34&rft.issue=6&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.24228&rft_dat=%3Cproquest_RIE%3E25317932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25317932&rft_id=info:pmid/&rft_ieee_id=24228&rfr_iscdi=true