An adaptive controller which provides Lyapunov stability
An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1989-06, Vol.34 (6), p.599-609 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 6 |
container_start_page | 599 |
container_title | IEEE transactions on automatic control |
container_volume | 34 |
creator | Miller, D.E. Davison, E.J. |
description | An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.< > |
doi_str_mv | 10.1109/9.24228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25317932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>24228</ieee_id><sourcerecordid>25317932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqUgZrYMCKaU2M659lhVfEmVWGC27IujGqVJsNOg_ntSUnWF6XS6R8-9egm5ptmM0kw9qBnLGZMnZEIBZMqA8VMyyTIqU8WkOCcXMX4Oq8hzOiFyUSemMG3ne5dgU3ehqSoXku-1x3XShqb3hYvJamfabd30SeyM9ZXvdpfkrDRVdFeHOSUfT4_vy5d09fb8ulysUuSCdykw45CjLYSgVBnJZMlskSFIACFRWlOihIIxNUdOQeWGWhSQAy2UtBb5lNyN3iHL19bFTm98RFdVpnbNNmomFWRS8X-AOQMK-d8gcDpXnA3g_QhiaGIMrtRt8BsTdppmet-1Vvq364G8PShNRFOVwdTo4xGf8yGh2H--GTHvnDteR8UPkWSExw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25317932</pqid></control><display><type>article</type><title>An adaptive controller which provides Lyapunov stability</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, D.E. ; Davison, E.J.</creator><creatorcontrib>Miller, D.E. ; Davison, E.J.</creatorcontrib><description>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.24228</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Councils ; Differential equations ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Frequency ; Lyapunov method ; Programmable control ; Stability ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1989-06, Vol.34 (6), p.599-609</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</citedby><cites>FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/24228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/24228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7308964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, D.E.</creatorcontrib><creatorcontrib>Davison, E.J.</creatorcontrib><title>An adaptive controller which provides Lyapunov stability</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.< ></description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Councils</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Lyapunov method</subject><subject>Programmable control</subject><subject>Stability</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqUgZrYMCKaU2M659lhVfEmVWGC27IujGqVJsNOg_ntSUnWF6XS6R8-9egm5ptmM0kw9qBnLGZMnZEIBZMqA8VMyyTIqU8WkOCcXMX4Oq8hzOiFyUSemMG3ne5dgU3ehqSoXku-1x3XShqb3hYvJamfabd30SeyM9ZXvdpfkrDRVdFeHOSUfT4_vy5d09fb8ulysUuSCdykw45CjLYSgVBnJZMlskSFIACFRWlOihIIxNUdOQeWGWhSQAy2UtBb5lNyN3iHL19bFTm98RFdVpnbNNmomFWRS8X-AOQMK-d8gcDpXnA3g_QhiaGIMrtRt8BsTdppmet-1Vvq364G8PShNRFOVwdTo4xGf8yGh2H--GTHvnDteR8UPkWSExw</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>Miller, D.E.</creator><creator>Davison, E.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890601</creationdate><title>An adaptive controller which provides Lyapunov stability</title><author>Miller, D.E. ; Davison, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-52aec3cbd66119a828f2bd0c585568c8bafc85d2297c31594a1bc65451d98bbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Councils</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Lyapunov method</topic><topic>Programmable control</topic><topic>Stability</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, D.E.</creatorcontrib><creatorcontrib>Davison, E.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, D.E.</au><au>Davison, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive controller which provides Lyapunov stability</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1989-06-01</date><risdate>1989</risdate><volume>34</volume><issue>6</issue><spage>599</spage><epage>609</epage><pages>599-609</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An adaptive controller that can provide exponential Lyapunov stability for an unknown linear time-invariant (LTI) system is presented. The only required a priori information about the plant is that the order of an LTI stabilizing compensator be known, although this can be reduced to assuming only that the plant is stabilizable and detectable at the expense of using a more complicated controller. This result extends the work of M. Fu and B.R. Barmish (see ibid., vol.AC-31, p.1097-1103, Dec. 1986) in which it is shown that there exists an adaptive controller which provides exponential Lyapunov stability if it is assumed that an upper bound on the plant order is known and that the plant lies in a known compact set; it shows that adaptive stabilization is possible under very mild assumptions without large state deviations.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.24228</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1989-06, Vol.34 (6), p.599-609 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_25317932 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptative systems Adaptive control Applied sciences Computer science control theory systems Control systems Control theory. Systems Councils Differential equations Eigenvalues and eigenfunctions Exact sciences and technology Frequency Lyapunov method Programmable control Stability Upper bound |
title | An adaptive controller which provides Lyapunov stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20controller%20which%20provides%20Lyapunov%20stability&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Miller,%20D.E.&rft.date=1989-06-01&rft.volume=34&rft.issue=6&rft.spage=599&rft.epage=609&rft.pages=599-609&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.24228&rft_dat=%3Cproquest_RIE%3E25317932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25317932&rft_id=info:pmid/&rft_ieee_id=24228&rfr_iscdi=true |