Image-based cell phenotyping with deep learning

A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in chemical biology 2021-12, Vol.65, p.9-17
Hauptverfasser: Pratapa, Aditya, Doron, Michael, Caicedo, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 9
container_title Current opinion in chemical biology
container_volume 65
creator Pratapa, Aditya
Doron, Michael
Caicedo, Juan C.
description A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.
doi_str_mv 10.1016/j.cbpa.2021.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531539849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1367593121000478</els_id><sourcerecordid>2531539849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmySju08bIkNqnhUqsQG1pZjT1pXaRLiFNS_x1ELS1Yzmrn3auYQckshoUDz-TYxZacTBowmkCYA9IxMqShkDCmw89DzvIgzyemEXHm_BYCcieySTHjYcwEwJfPlTq8xLrVHGxms66jbYNMOh8416-jbDZvIInZRjbpvwuiaXFS69nhzqjPy8fz0vniNV28vy8XjKjY8y4cYBaWSMymQUy2QFnnJBc-kLFPDhOBW8gI0qxhyVtpUlICmtBRyI9OCVhmfkftjbte3n3v0g9o5P96nG2z3XrGM04xLkcogZUep6Vvve6xU17ud7g-KghpBqa0aQakRlIJUBVDBdHfK35c7tH-WXzJB8HAUYPjyy2GvvHHYGLSuRzMo27r_8n8ALel3JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531539849</pqid></control><display><type>article</type><title>Image-based cell phenotyping with deep learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</creator><creatorcontrib>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</creatorcontrib><description>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</description><identifier>ISSN: 1367-5931</identifier><identifier>EISSN: 1879-0402</identifier><identifier>DOI: 10.1016/j.cbpa.2021.04.001</identifier><identifier>PMID: 34023800</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cell phenotyping ; Deep Learning ; Diagnostic Imaging ; Image analysis ; Phenotype ; Phenotypic screening</subject><ispartof>Current opinion in chemical biology, 2021-12, Vol.65, p.9-17</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</citedby><cites>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cbpa.2021.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34023800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pratapa, Aditya</creatorcontrib><creatorcontrib>Doron, Michael</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><title>Image-based cell phenotyping with deep learning</title><title>Current opinion in chemical biology</title><addtitle>Curr Opin Chem Biol</addtitle><description>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</description><subject>Cell phenotyping</subject><subject>Deep Learning</subject><subject>Diagnostic Imaging</subject><subject>Image analysis</subject><subject>Phenotype</subject><subject>Phenotypic screening</subject><issn>1367-5931</issn><issn>1879-0402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmySju08bIkNqnhUqsQG1pZjT1pXaRLiFNS_x1ELS1Yzmrn3auYQckshoUDz-TYxZacTBowmkCYA9IxMqShkDCmw89DzvIgzyemEXHm_BYCcieySTHjYcwEwJfPlTq8xLrVHGxms66jbYNMOh8416-jbDZvIInZRjbpvwuiaXFS69nhzqjPy8fz0vniNV28vy8XjKjY8y4cYBaWSMymQUy2QFnnJBc-kLFPDhOBW8gI0qxhyVtpUlICmtBRyI9OCVhmfkftjbte3n3v0g9o5P96nG2z3XrGM04xLkcogZUep6Vvve6xU17ud7g-KghpBqa0aQakRlIJUBVDBdHfK35c7tH-WXzJB8HAUYPjyy2GvvHHYGLSuRzMo27r_8n8ALel3JQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Pratapa, Aditya</creator><creator>Doron, Michael</creator><creator>Caicedo, Juan C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>Image-based cell phenotyping with deep learning</title><author>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell phenotyping</topic><topic>Deep Learning</topic><topic>Diagnostic Imaging</topic><topic>Image analysis</topic><topic>Phenotype</topic><topic>Phenotypic screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratapa, Aditya</creatorcontrib><creatorcontrib>Doron, Michael</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratapa, Aditya</au><au>Doron, Michael</au><au>Caicedo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based cell phenotyping with deep learning</atitle><jtitle>Current opinion in chemical biology</jtitle><addtitle>Curr Opin Chem Biol</addtitle><date>2021-12</date><risdate>2021</risdate><volume>65</volume><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>1367-5931</issn><eissn>1879-0402</eissn><abstract>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34023800</pmid><doi>10.1016/j.cbpa.2021.04.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-5931
ispartof Current opinion in chemical biology, 2021-12, Vol.65, p.9-17
issn 1367-5931
1879-0402
language eng
recordid cdi_proquest_miscellaneous_2531539849
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Cell phenotyping
Deep Learning
Diagnostic Imaging
Image analysis
Phenotype
Phenotypic screening
title Image-based cell phenotyping with deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20cell%20phenotyping%20with%20deep%20learning&rft.jtitle=Current%20opinion%20in%20chemical%20biology&rft.au=Pratapa,%20Aditya&rft.date=2021-12&rft.volume=65&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=1367-5931&rft.eissn=1879-0402&rft_id=info:doi/10.1016/j.cbpa.2021.04.001&rft_dat=%3Cproquest_cross%3E2531539849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531539849&rft_id=info:pmid/34023800&rft_els_id=S1367593121000478&rfr_iscdi=true