Image-based cell phenotyping with deep learning
A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. R...
Gespeichert in:
Veröffentlicht in: | Current opinion in chemical biology 2021-12, Vol.65, p.9-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 9 |
container_title | Current opinion in chemical biology |
container_volume | 65 |
creator | Pratapa, Aditya Doron, Michael Caicedo, Juan C. |
description | A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes. |
doi_str_mv | 10.1016/j.cbpa.2021.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531539849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1367593121000478</els_id><sourcerecordid>2531539849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQlmySju08bIkNqnhUqsQG1pZjT1pXaRLiFNS_x1ELS1Yzmrn3auYQckshoUDz-TYxZacTBowmkCYA9IxMqShkDCmw89DzvIgzyemEXHm_BYCcieySTHjYcwEwJfPlTq8xLrVHGxms66jbYNMOh8416-jbDZvIInZRjbpvwuiaXFS69nhzqjPy8fz0vniNV28vy8XjKjY8y4cYBaWSMymQUy2QFnnJBc-kLFPDhOBW8gI0qxhyVtpUlICmtBRyI9OCVhmfkftjbte3n3v0g9o5P96nG2z3XrGM04xLkcogZUep6Vvve6xU17ud7g-KghpBqa0aQakRlIJUBVDBdHfK35c7tH-WXzJB8HAUYPjyy2GvvHHYGLSuRzMo27r_8n8ALel3JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531539849</pqid></control><display><type>article</type><title>Image-based cell phenotyping with deep learning</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</creator><creatorcontrib>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</creatorcontrib><description>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</description><identifier>ISSN: 1367-5931</identifier><identifier>EISSN: 1879-0402</identifier><identifier>DOI: 10.1016/j.cbpa.2021.04.001</identifier><identifier>PMID: 34023800</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cell phenotyping ; Deep Learning ; Diagnostic Imaging ; Image analysis ; Phenotype ; Phenotypic screening</subject><ispartof>Current opinion in chemical biology, 2021-12, Vol.65, p.9-17</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</citedby><cites>FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cbpa.2021.04.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34023800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pratapa, Aditya</creatorcontrib><creatorcontrib>Doron, Michael</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><title>Image-based cell phenotyping with deep learning</title><title>Current opinion in chemical biology</title><addtitle>Curr Opin Chem Biol</addtitle><description>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</description><subject>Cell phenotyping</subject><subject>Deep Learning</subject><subject>Diagnostic Imaging</subject><subject>Image analysis</subject><subject>Phenotype</subject><subject>Phenotypic screening</subject><issn>1367-5931</issn><issn>1879-0402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQlmySju08bIkNqnhUqsQG1pZjT1pXaRLiFNS_x1ELS1Yzmrn3auYQckshoUDz-TYxZacTBowmkCYA9IxMqShkDCmw89DzvIgzyemEXHm_BYCcieySTHjYcwEwJfPlTq8xLrVHGxms66jbYNMOh8416-jbDZvIInZRjbpvwuiaXFS69nhzqjPy8fz0vniNV28vy8XjKjY8y4cYBaWSMymQUy2QFnnJBc-kLFPDhOBW8gI0qxhyVtpUlICmtBRyI9OCVhmfkftjbte3n3v0g9o5P96nG2z3XrGM04xLkcogZUep6Vvve6xU17ud7g-KghpBqa0aQakRlIJUBVDBdHfK35c7tH-WXzJB8HAUYPjyy2GvvHHYGLSuRzMo27r_8n8ALel3JQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Pratapa, Aditya</creator><creator>Doron, Michael</creator><creator>Caicedo, Juan C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>Image-based cell phenotyping with deep learning</title><author>Pratapa, Aditya ; Doron, Michael ; Caicedo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e81193298e31a8e176b383599b4c2883d9370a2f2e32bd48b0ecbd106c9471f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell phenotyping</topic><topic>Deep Learning</topic><topic>Diagnostic Imaging</topic><topic>Image analysis</topic><topic>Phenotype</topic><topic>Phenotypic screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pratapa, Aditya</creatorcontrib><creatorcontrib>Doron, Michael</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pratapa, Aditya</au><au>Doron, Michael</au><au>Caicedo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-based cell phenotyping with deep learning</atitle><jtitle>Current opinion in chemical biology</jtitle><addtitle>Curr Opin Chem Biol</addtitle><date>2021-12</date><risdate>2021</risdate><volume>65</volume><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>1367-5931</issn><eissn>1879-0402</eissn><abstract>A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34023800</pmid><doi>10.1016/j.cbpa.2021.04.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5931 |
ispartof | Current opinion in chemical biology, 2021-12, Vol.65, p.9-17 |
issn | 1367-5931 1879-0402 |
language | eng |
recordid | cdi_proquest_miscellaneous_2531539849 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Cell phenotyping Deep Learning Diagnostic Imaging Image analysis Phenotype Phenotypic screening |
title | Image-based cell phenotyping with deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-based%20cell%20phenotyping%20with%20deep%20learning&rft.jtitle=Current%20opinion%20in%20chemical%20biology&rft.au=Pratapa,%20Aditya&rft.date=2021-12&rft.volume=65&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=1367-5931&rft.eissn=1879-0402&rft_id=info:doi/10.1016/j.cbpa.2021.04.001&rft_dat=%3Cproquest_cross%3E2531539849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531539849&rft_id=info:pmid/34023800&rft_els_id=S1367593121000478&rfr_iscdi=true |