Comparative genome analysis of Corynebacterium species: The underestimated pathogens with high virulence potential
Non-diphtherial Corynebacterium species or diphtheroids were previously considered as the mere contaminants of clinical samples. Of late, they have been reckoned as the formidable infection causing agents of various diseases. While the scientific database is filled with articles that document whole...
Gespeichert in:
Veröffentlicht in: | Infection, genetics and evolution genetics and evolution, 2021-09, Vol.93, p.104928-104928, Article 104928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-diphtherial Corynebacterium species or diphtheroids were previously considered as the mere contaminants of clinical samples. Of late, they have been reckoned as the formidable infection causing agents of various diseases. While the scientific database is filled with articles that document whole genome analysis of individual isolates, a comprehensive comparative genomic analysis of diphtheroids alongside Corynebacterium diphtheriae is expected to enable us in understanding their genomic as well as evolutionary divergence. Here, we have analysed the whole genome sequences of forty strains that were selected from a range of eleven Corynebacterium species (pathogenic and non-pathogenic). A statistical analysis of the pan and core genomes revealed that even though the core genome is saturated, the pan genome is yet open rendering scope for newer gene families to be accumulated in the course of evolution that might further change the pathogenic behavior of these species. Every strain had bacteriophage components integrated in its genome and some of them were intact and consisted of toxins. The presence of diversified genomic islands was observed across the dataset and most of them consisted of genes for virulence and multidrug resistance. Moreover, the phylogenetic analysis showed that a diphtheroid is the last common ancestor of all the Corynebacterium species. The current study is a compilation of genomic features of pathogenic as well as non-pathogenic Corynebacterium species which provides insights into their virulence potential in the times to come.
•Pathogenic Corynebacterium species have smaller genome size than non-pathogenic ones.•Genomic islands carry virulence and antibiotic resistance genes.•Phylogenetic relationship represents evolution of each of the Corynebacterium species.•The last common ancestor of all Corynebacterium species is a diphtheroid. |
---|---|
ISSN: | 1567-1348 1567-7257 |
DOI: | 10.1016/j.meegid.2021.104928 |