Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors

Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2022-02, Vol.151 (2), p.1-10
Hauptverfasser: Nishiori, Daiki, Wadsworth, Brian L., Reyes Cruz, Edgar A., Nguyen, Nghi P., Hensleigh, Lillian K., Karcher, Timothy, Moore, Gary F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2
container_start_page 1
container_title Photosynthesis research
container_volume 151
creator Nishiori, Daiki
Wadsworth, Brian L.
Reyes Cruz, Edgar A.
Nguyen, Nghi P.
Hensleigh, Lillian K.
Karcher, Timothy
Moore, Gary F.
description Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.
doi_str_mv 10.1007/s11120-021-00834-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531220966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696060286</galeid><sourcerecordid>A696060286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</originalsourceid><addsrcrecordid>eNp9kc1O3DAURq2qqAy0L9BFNVI3bDzcaydOvESjYUAaCRawthz_MEFJPLWTxbw9hlAqdYG8sGSf7-rYHyE_EVYIUF0mRGRAgSEFqHlB2ReywLLitIRKfiULQCFoXcrylJyl9AyZEsi_kVNe5FBdyAXZ3O_DGFznzBiD2bu-TWM8LoNf9m7UXRcOIR72x9gOtA-29a2zy62-X6ZMmjDYyYwhpu_kxOsuuR_v-zl5vN48rG_o7m57u77aUVNgMdLsi1VtsHKVtjILNJ5rUZimMbbktUXpvWbIG-ZdLZsCrGDSasZkbQAl8HNyMc89xPBncmlU2de4rtODC1NSrOTIGEghMvr7P_Q5THHIdoqJAhmXvCoztZqpJ9051Q4-jFGbvOz8PufbfH4lpAABrH4dy-aAiSGl6Lw6xLbX8agQ1Gsram5F5Q9Wb60olkO_3l2mpnf2I_K3hgzwGUj5anhy8Z_sJ2NfABlZlwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641239375</pqid></control><display><type>article</type><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</creator><creatorcontrib>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</creatorcontrib><description>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-021-00834-2</identifier><identifier>PMID: 34021849</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Catalysis ; Catalysts ; Chemical tests and reagents ; Coatings ; Composite materials ; Copper ; Electrodes ; Gallium ; Gallium compounds ; Hydrogen ; Interfaces ; Life Sciences ; Metal ions ; Metalloporphyrins - chemistry ; Original Article ; Phosphines ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Porphyrins ; Recombination ; Semiconductors</subject><ispartof>Photosynthesis research, 2022-02, Vol.151 (2), p.1-10</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</citedby><cites>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</cites><orcidid>0000-0002-4707-0896 ; 0000-0002-2202-0999 ; 0000-0002-8970-3372 ; 0000-0003-3369-9308 ; 0000-0001-7307-7613 ; 0000-0002-0274-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-021-00834-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-021-00834-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34021849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishiori, Daiki</creatorcontrib><creatorcontrib>Wadsworth, Brian L.</creatorcontrib><creatorcontrib>Reyes Cruz, Edgar A.</creatorcontrib><creatorcontrib>Nguyen, Nghi P.</creatorcontrib><creatorcontrib>Hensleigh, Lillian K.</creatorcontrib><creatorcontrib>Karcher, Timothy</creatorcontrib><creatorcontrib>Moore, Gary F.</creatorcontrib><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical tests and reagents</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Electrodes</subject><subject>Gallium</subject><subject>Gallium compounds</subject><subject>Hydrogen</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Metal ions</subject><subject>Metalloporphyrins - chemistry</subject><subject>Original Article</subject><subject>Phosphines</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Porphyrins</subject><subject>Recombination</subject><subject>Semiconductors</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1O3DAURq2qqAy0L9BFNVI3bDzcaydOvESjYUAaCRawthz_MEFJPLWTxbw9hlAqdYG8sGSf7-rYHyE_EVYIUF0mRGRAgSEFqHlB2ReywLLitIRKfiULQCFoXcrylJyl9AyZEsi_kVNe5FBdyAXZ3O_DGFznzBiD2bu-TWM8LoNf9m7UXRcOIR72x9gOtA-29a2zy62-X6ZMmjDYyYwhpu_kxOsuuR_v-zl5vN48rG_o7m57u77aUVNgMdLsi1VtsHKVtjILNJ5rUZimMbbktUXpvWbIG-ZdLZsCrGDSasZkbQAl8HNyMc89xPBncmlU2de4rtODC1NSrOTIGEghMvr7P_Q5THHIdoqJAhmXvCoztZqpJ9051Q4-jFGbvOz8PufbfH4lpAABrH4dy-aAiSGl6Lw6xLbX8agQ1Gsram5F5Q9Wb60olkO_3l2mpnf2I_K3hgzwGUj5anhy8Z_sJ2NfABlZlwg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nishiori, Daiki</creator><creator>Wadsworth, Brian L.</creator><creator>Reyes Cruz, Edgar A.</creator><creator>Nguyen, Nghi P.</creator><creator>Hensleigh, Lillian K.</creator><creator>Karcher, Timothy</creator><creator>Moore, Gary F.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4707-0896</orcidid><orcidid>https://orcid.org/0000-0002-2202-0999</orcidid><orcidid>https://orcid.org/0000-0002-8970-3372</orcidid><orcidid>https://orcid.org/0000-0003-3369-9308</orcidid><orcidid>https://orcid.org/0000-0001-7307-7613</orcidid><orcidid>https://orcid.org/0000-0002-0274-9993</orcidid></search><sort><creationdate>20220201</creationdate><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><author>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical tests and reagents</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Electrodes</topic><topic>Gallium</topic><topic>Gallium compounds</topic><topic>Hydrogen</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Metal ions</topic><topic>Metalloporphyrins - chemistry</topic><topic>Original Article</topic><topic>Phosphines</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Porphyrins</topic><topic>Recombination</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishiori, Daiki</creatorcontrib><creatorcontrib>Wadsworth, Brian L.</creatorcontrib><creatorcontrib>Reyes Cruz, Edgar A.</creatorcontrib><creatorcontrib>Nguyen, Nghi P.</creatorcontrib><creatorcontrib>Hensleigh, Lillian K.</creatorcontrib><creatorcontrib>Karcher, Timothy</creatorcontrib><creatorcontrib>Moore, Gary F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishiori, Daiki</au><au>Wadsworth, Brian L.</au><au>Reyes Cruz, Edgar A.</au><au>Nguyen, Nghi P.</au><au>Hensleigh, Lillian K.</au><au>Karcher, Timothy</au><au>Moore, Gary F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>151</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34021849</pmid><doi>10.1007/s11120-021-00834-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4707-0896</orcidid><orcidid>https://orcid.org/0000-0002-2202-0999</orcidid><orcidid>https://orcid.org/0000-0002-8970-3372</orcidid><orcidid>https://orcid.org/0000-0003-3369-9308</orcidid><orcidid>https://orcid.org/0000-0001-7307-7613</orcidid><orcidid>https://orcid.org/0000-0002-0274-9993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2022-02, Vol.151 (2), p.1-10
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_2531220966
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biochemistry
Biomedical and Life Sciences
Catalysis
Catalysts
Chemical tests and reagents
Coatings
Composite materials
Copper
Electrodes
Gallium
Gallium compounds
Hydrogen
Interfaces
Life Sciences
Metal ions
Metalloporphyrins - chemistry
Original Article
Phosphines
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Porphyrins
Recombination
Semiconductors
title Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemistry%20of%20metalloporphyrin-modified%20GaP%20semiconductors&rft.jtitle=Photosynthesis%20research&rft.au=Nishiori,%20Daiki&rft.date=2022-02-01&rft.volume=151&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-021-00834-2&rft_dat=%3Cgale_proqu%3EA696060286%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641239375&rft_id=info:pmid/34021849&rft_galeid=A696060286&rfr_iscdi=true