Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors
Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their a...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2022-02, Vol.151 (2), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Photosynthesis research |
container_volume | 151 |
creator | Nishiori, Daiki Wadsworth, Brian L. Reyes Cruz, Edgar A. Nguyen, Nghi P. Hensleigh, Lillian K. Karcher, Timothy Moore, Gary F. |
description | Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces. |
doi_str_mv | 10.1007/s11120-021-00834-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531220966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696060286</galeid><sourcerecordid>A696060286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</originalsourceid><addsrcrecordid>eNp9kc1O3DAURq2qqAy0L9BFNVI3bDzcaydOvESjYUAaCRawthz_MEFJPLWTxbw9hlAqdYG8sGSf7-rYHyE_EVYIUF0mRGRAgSEFqHlB2ReywLLitIRKfiULQCFoXcrylJyl9AyZEsi_kVNe5FBdyAXZ3O_DGFznzBiD2bu-TWM8LoNf9m7UXRcOIR72x9gOtA-29a2zy62-X6ZMmjDYyYwhpu_kxOsuuR_v-zl5vN48rG_o7m57u77aUVNgMdLsi1VtsHKVtjILNJ5rUZimMbbktUXpvWbIG-ZdLZsCrGDSasZkbQAl8HNyMc89xPBncmlU2de4rtODC1NSrOTIGEghMvr7P_Q5THHIdoqJAhmXvCoztZqpJ9051Q4-jFGbvOz8PufbfH4lpAABrH4dy-aAiSGl6Lw6xLbX8agQ1Gsram5F5Q9Wb60olkO_3l2mpnf2I_K3hgzwGUj5anhy8Z_sJ2NfABlZlwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641239375</pqid></control><display><type>article</type><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</creator><creatorcontrib>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</creatorcontrib><description>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-021-00834-2</identifier><identifier>PMID: 34021849</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Catalysis ; Catalysts ; Chemical tests and reagents ; Coatings ; Composite materials ; Copper ; Electrodes ; Gallium ; Gallium compounds ; Hydrogen ; Interfaces ; Life Sciences ; Metal ions ; Metalloporphyrins - chemistry ; Original Article ; Phosphines ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Porphyrins ; Recombination ; Semiconductors</subject><ispartof>Photosynthesis research, 2022-02, Vol.151 (2), p.1-10</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</citedby><cites>FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</cites><orcidid>0000-0002-4707-0896 ; 0000-0002-2202-0999 ; 0000-0002-8970-3372 ; 0000-0003-3369-9308 ; 0000-0001-7307-7613 ; 0000-0002-0274-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-021-00834-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-021-00834-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34021849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishiori, Daiki</creatorcontrib><creatorcontrib>Wadsworth, Brian L.</creatorcontrib><creatorcontrib>Reyes Cruz, Edgar A.</creatorcontrib><creatorcontrib>Nguyen, Nghi P.</creatorcontrib><creatorcontrib>Hensleigh, Lillian K.</creatorcontrib><creatorcontrib>Karcher, Timothy</creatorcontrib><creatorcontrib>Moore, Gary F.</creatorcontrib><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical tests and reagents</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Electrodes</subject><subject>Gallium</subject><subject>Gallium compounds</subject><subject>Hydrogen</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Metal ions</subject><subject>Metalloporphyrins - chemistry</subject><subject>Original Article</subject><subject>Phosphines</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Porphyrins</subject><subject>Recombination</subject><subject>Semiconductors</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1O3DAURq2qqAy0L9BFNVI3bDzcaydOvESjYUAaCRawthz_MEFJPLWTxbw9hlAqdYG8sGSf7-rYHyE_EVYIUF0mRGRAgSEFqHlB2ReywLLitIRKfiULQCFoXcrylJyl9AyZEsi_kVNe5FBdyAXZ3O_DGFznzBiD2bu-TWM8LoNf9m7UXRcOIR72x9gOtA-29a2zy62-X6ZMmjDYyYwhpu_kxOsuuR_v-zl5vN48rG_o7m57u77aUVNgMdLsi1VtsHKVtjILNJ5rUZimMbbktUXpvWbIG-ZdLZsCrGDSasZkbQAl8HNyMc89xPBncmlU2de4rtODC1NSrOTIGEghMvr7P_Q5THHIdoqJAhmXvCoztZqpJ9051Q4-jFGbvOz8PufbfH4lpAABrH4dy-aAiSGl6Lw6xLbX8agQ1Gsram5F5Q9Wb60olkO_3l2mpnf2I_K3hgzwGUj5anhy8Z_sJ2NfABlZlwg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nishiori, Daiki</creator><creator>Wadsworth, Brian L.</creator><creator>Reyes Cruz, Edgar A.</creator><creator>Nguyen, Nghi P.</creator><creator>Hensleigh, Lillian K.</creator><creator>Karcher, Timothy</creator><creator>Moore, Gary F.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4707-0896</orcidid><orcidid>https://orcid.org/0000-0002-2202-0999</orcidid><orcidid>https://orcid.org/0000-0002-8970-3372</orcidid><orcidid>https://orcid.org/0000-0003-3369-9308</orcidid><orcidid>https://orcid.org/0000-0001-7307-7613</orcidid><orcidid>https://orcid.org/0000-0002-0274-9993</orcidid></search><sort><creationdate>20220201</creationdate><title>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</title><author>Nishiori, Daiki ; Wadsworth, Brian L. ; Reyes Cruz, Edgar A. ; Nguyen, Nghi P. ; Hensleigh, Lillian K. ; Karcher, Timothy ; Moore, Gary F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-111178c17e7ad9184bf3a64cbbcd538d19ffa213b2fe89b40d629da2298c01903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical tests and reagents</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Electrodes</topic><topic>Gallium</topic><topic>Gallium compounds</topic><topic>Hydrogen</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Metal ions</topic><topic>Metalloporphyrins - chemistry</topic><topic>Original Article</topic><topic>Phosphines</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Porphyrins</topic><topic>Recombination</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishiori, Daiki</creatorcontrib><creatorcontrib>Wadsworth, Brian L.</creatorcontrib><creatorcontrib>Reyes Cruz, Edgar A.</creatorcontrib><creatorcontrib>Nguyen, Nghi P.</creatorcontrib><creatorcontrib>Hensleigh, Lillian K.</creatorcontrib><creatorcontrib>Karcher, Timothy</creatorcontrib><creatorcontrib>Moore, Gary F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishiori, Daiki</au><au>Wadsworth, Brian L.</au><au>Reyes Cruz, Edgar A.</au><au>Nguyen, Nghi P.</au><au>Hensleigh, Lillian K.</au><au>Karcher, Timothy</au><au>Moore, Gary F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>151</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Photoelectrosynthetic materials provide a bioinspired approach for using the power of the sun to produce fuels and other value-added chemical products. However, there remains an incomplete understanding of the operating principles governing their performance and thereby effective methods for their assembly. Herein we report the application of metalloporphyrins, several of which are known to catalyze the hydrogen evolution reaction, in forming surface coatings to assemble hybrid photoelectrosynthetic materials featuring an underlying gallium phosphide (GaP) semiconductor as a light capture and conversion component. The metalloporphyrin reagents used in this work contain a 4-vinylphenyl surface-attachment group at the β-position of the porphyrin ring and a first-row transition metal ion (Fe, Co, Ni, Cu, or Zn) coordinated at the core of the macrocycle. In addition to describing the synthesis, optical, and electrochemical properties of the homogeneous porphyrin complexes, we also report on the photoelectrochemistry of the heterogeneous metalloporphyrin-modified GaP semiconductor electrodes. These hybrid, heterogeneous-homogeneous electrodes are prepared via UV-induced grafting of the homogeneous metalloporphyrin reagents onto the heterogeneous gallium phosphide surfaces. Three-electrode voltammetry measurements performed under controlled lighting conditions enable determination of the open-circuit photovoltages, fill factors, and overall current–voltage responses associated with these composite materials, setting the stage for better understanding charge-transfer and carrier-recombination kinetics at semiconductor|catalyst|liquid interfaces.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34021849</pmid><doi>10.1007/s11120-021-00834-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4707-0896</orcidid><orcidid>https://orcid.org/0000-0002-2202-0999</orcidid><orcidid>https://orcid.org/0000-0002-8970-3372</orcidid><orcidid>https://orcid.org/0000-0003-3369-9308</orcidid><orcidid>https://orcid.org/0000-0001-7307-7613</orcidid><orcidid>https://orcid.org/0000-0002-0274-9993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2022-02, Vol.151 (2), p.1-10 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_proquest_miscellaneous_2531220966 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biochemistry Biomedical and Life Sciences Catalysis Catalysts Chemical tests and reagents Coatings Composite materials Copper Electrodes Gallium Gallium compounds Hydrogen Interfaces Life Sciences Metal ions Metalloporphyrins - chemistry Original Article Phosphines Plant Genetics and Genomics Plant Physiology Plant Sciences Porphyrins Recombination Semiconductors |
title | Photoelectrochemistry of metalloporphyrin-modified GaP semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemistry%20of%20metalloporphyrin-modified%20GaP%20semiconductors&rft.jtitle=Photosynthesis%20research&rft.au=Nishiori,%20Daiki&rft.date=2022-02-01&rft.volume=151&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-021-00834-2&rft_dat=%3Cgale_proqu%3EA696060286%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641239375&rft_id=info:pmid/34021849&rft_galeid=A696060286&rfr_iscdi=true |